spacebox/lib/cli11/CLI11.hpp

10999 lines
411 KiB
C++

// CLI11: Version 2.4.2
// Originally designed by Henry Schreiner
// https://github.com/CLIUtils/CLI11
//
// This is a standalone header file generated by MakeSingleHeader.py in CLI11/scripts
// from: v2.4.2
//
// CLI11 2.4.2 Copyright (c) 2017-2024 University of Cincinnati, developed by Henry
// Schreiner under NSF AWARD 1414736. All rights reserved.
//
// Redistribution and use in source and binary forms of CLI11, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// 3. Neither the name of the copyright holder nor the names of its contributors
// may be used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
// ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
// ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#pragma once
// Standard combined includes:
#include <algorithm>
#include <array>
#include <cctype>
#include <clocale>
#include <cmath>
#include <cstdint>
#include <cstdlib>
#include <cstring>
#include <cwchar>
#include <exception>
#include <fstream>
#include <functional>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <limits>
#include <locale>
#include <map>
#include <memory>
#include <numeric>
#include <set>
#include <sstream>
#include <stdexcept>
#include <string>
#include <tuple>
#include <type_traits>
#include <utility>
#include <vector>
#define CLI11_VERSION_MAJOR 2
#define CLI11_VERSION_MINOR 4
#define CLI11_VERSION_PATCH 2
#define CLI11_VERSION "2.4.2"
// The following version macro is very similar to the one in pybind11
#if !(defined(_MSC_VER) && __cplusplus == 199711L) && !defined(__INTEL_COMPILER)
#if __cplusplus >= 201402L
#define CLI11_CPP14
#if __cplusplus >= 201703L
#define CLI11_CPP17
#if __cplusplus > 201703L
#define CLI11_CPP20
#endif
#endif
#endif
#elif defined(_MSC_VER) && __cplusplus == 199711L
// MSVC sets _MSVC_LANG rather than __cplusplus (supposedly until the standard is fully implemented)
// Unless you use the /Zc:__cplusplus flag on Visual Studio 2017 15.7 Preview 3 or newer
#if _MSVC_LANG >= 201402L
#define CLI11_CPP14
#if _MSVC_LANG > 201402L && _MSC_VER >= 1910
#define CLI11_CPP17
#if _MSVC_LANG > 201703L && _MSC_VER >= 1910
#define CLI11_CPP20
#endif
#endif
#endif
#endif
#if defined(CLI11_CPP14)
#define CLI11_DEPRECATED(reason) [[deprecated(reason)]]
#elif defined(_MSC_VER)
#define CLI11_DEPRECATED(reason) __declspec(deprecated(reason))
#else
#define CLI11_DEPRECATED(reason) __attribute__((deprecated(reason)))
#endif
// GCC < 10 doesn't ignore this in unevaluated contexts
#if !defined(CLI11_CPP17) || \
(defined(__GNUC__) && !defined(__llvm__) && !defined(__INTEL_COMPILER) && __GNUC__ < 10 && __GNUC__ > 4)
#define CLI11_NODISCARD
#else
#define CLI11_NODISCARD [[nodiscard]]
#endif
/** detection of rtti */
#ifndef CLI11_USE_STATIC_RTTI
#if(defined(_HAS_STATIC_RTTI) && _HAS_STATIC_RTTI)
#define CLI11_USE_STATIC_RTTI 1
#elif defined(__cpp_rtti)
#if(defined(_CPPRTTI) && _CPPRTTI == 0)
#define CLI11_USE_STATIC_RTTI 1
#else
#define CLI11_USE_STATIC_RTTI 0
#endif
#elif(defined(__GCC_RTTI) && __GXX_RTTI)
#define CLI11_USE_STATIC_RTTI 0
#else
#define CLI11_USE_STATIC_RTTI 1
#endif
#endif
/** <filesystem> availability */
#if defined CLI11_CPP17 && defined __has_include && !defined CLI11_HAS_FILESYSTEM
#if __has_include(<filesystem>)
// Filesystem cannot be used if targeting macOS < 10.15
#if defined __MAC_OS_X_VERSION_MIN_REQUIRED && __MAC_OS_X_VERSION_MIN_REQUIRED < 101500
#define CLI11_HAS_FILESYSTEM 0
#elif defined(__wasi__)
// As of wasi-sdk-14, filesystem is not implemented
#define CLI11_HAS_FILESYSTEM 0
#else
#include <filesystem>
#if defined __cpp_lib_filesystem && __cpp_lib_filesystem >= 201703
#if defined _GLIBCXX_RELEASE && _GLIBCXX_RELEASE >= 9
#define CLI11_HAS_FILESYSTEM 1
#elif defined(__GLIBCXX__)
// if we are using gcc and Version <9 default to no filesystem
#define CLI11_HAS_FILESYSTEM 0
#else
#define CLI11_HAS_FILESYSTEM 1
#endif
#else
#define CLI11_HAS_FILESYSTEM 0
#endif
#endif
#endif
#endif
/** <codecvt> availability */
#if defined(__GNUC__) && !defined(__llvm__) && !defined(__INTEL_COMPILER) && __GNUC__ < 5
#define CLI11_HAS_CODECVT 0
#else
#define CLI11_HAS_CODECVT 1
#include <codecvt>
#endif
/** disable deprecations */
#if defined(__GNUC__) // GCC or clang
#define CLI11_DIAGNOSTIC_PUSH _Pragma("GCC diagnostic push")
#define CLI11_DIAGNOSTIC_POP _Pragma("GCC diagnostic pop")
#define CLI11_DIAGNOSTIC_IGNORE_DEPRECATED _Pragma("GCC diagnostic ignored \"-Wdeprecated-declarations\"")
#elif defined(_MSC_VER)
#define CLI11_DIAGNOSTIC_PUSH __pragma(warning(push))
#define CLI11_DIAGNOSTIC_POP __pragma(warning(pop))
#define CLI11_DIAGNOSTIC_IGNORE_DEPRECATED __pragma(warning(disable : 4996))
#else
#define CLI11_DIAGNOSTIC_PUSH
#define CLI11_DIAGNOSTIC_POP
#define CLI11_DIAGNOSTIC_IGNORE_DEPRECATED
#endif
/** Inline macro **/
#ifdef CLI11_COMPILE
#define CLI11_INLINE
#else
#define CLI11_INLINE inline
#endif
#if defined CLI11_HAS_FILESYSTEM && CLI11_HAS_FILESYSTEM > 0
#include <filesystem> // NOLINT(build/include)
#else
#include <sys/stat.h>
#include <sys/types.h>
#endif
#ifdef CLI11_CPP17
#include <string_view>
#endif // CLI11_CPP17
#if defined CLI11_HAS_FILESYSTEM && CLI11_HAS_FILESYSTEM > 0
#include <filesystem>
#include <string_view> // NOLINT(build/include)
#endif // CLI11_HAS_FILESYSTEM
#if defined(_WIN32)
#if !(defined(_AMD64_) || defined(_X86_) || defined(_ARM_))
#if defined(__amd64__) || defined(__amd64) || defined(__x86_64__) || defined(__x86_64) || defined(_M_X64) || \
defined(_M_AMD64)
#define _AMD64_
#elif defined(i386) || defined(__i386) || defined(__i386__) || defined(__i386__) || defined(_M_IX86)
#define _X86_
#elif defined(__arm__) || defined(_M_ARM) || defined(_M_ARMT)
#define _ARM_
#elif defined(__aarch64__) || defined(_M_ARM64)
#define _ARM64_
#elif defined(_M_ARM64EC)
#define _ARM64EC_
#endif
#endif
// first
#ifndef NOMINMAX
// if NOMINMAX is already defined we don't want to mess with that either way
#define NOMINMAX
#include <windef.h>
#undef NOMINMAX
#else
#include <windef.h>
#endif
// second
#include <winbase.h>
// third
#include <processthreadsapi.h>
#include <shellapi.h>
#endif
namespace CLI {
/// Convert a wide string to a narrow string.
CLI11_INLINE std::string narrow(const std::wstring &str);
CLI11_INLINE std::string narrow(const wchar_t *str);
CLI11_INLINE std::string narrow(const wchar_t *str, std::size_t size);
/// Convert a narrow string to a wide string.
CLI11_INLINE std::wstring widen(const std::string &str);
CLI11_INLINE std::wstring widen(const char *str);
CLI11_INLINE std::wstring widen(const char *str, std::size_t size);
#ifdef CLI11_CPP17
CLI11_INLINE std::string narrow(std::wstring_view str);
CLI11_INLINE std::wstring widen(std::string_view str);
#endif // CLI11_CPP17
#if defined CLI11_HAS_FILESYSTEM && CLI11_HAS_FILESYSTEM > 0
/// Convert a char-string to a native path correctly.
CLI11_INLINE std::filesystem::path to_path(std::string_view str);
#endif // CLI11_HAS_FILESYSTEM
namespace detail {
#if !CLI11_HAS_CODECVT
/// Attempt to set one of the acceptable unicode locales for conversion
CLI11_INLINE void set_unicode_locale() {
static const std::array<const char *, 3> unicode_locales{{"C.UTF-8", "en_US.UTF-8", ".UTF-8"}};
for(const auto &locale_name : unicode_locales) {
if(std::setlocale(LC_ALL, locale_name) != nullptr) {
return;
}
}
throw std::runtime_error("CLI::narrow: could not set locale to C.UTF-8");
}
template <typename F> struct scope_guard_t {
F closure;
explicit scope_guard_t(F closure_) : closure(closure_) {}
~scope_guard_t() { closure(); }
};
template <typename F> CLI11_NODISCARD CLI11_INLINE scope_guard_t<F> scope_guard(F &&closure) {
return scope_guard_t<F>{std::forward<F>(closure)};
}
#endif // !CLI11_HAS_CODECVT
CLI11_DIAGNOSTIC_PUSH
CLI11_DIAGNOSTIC_IGNORE_DEPRECATED
CLI11_INLINE std::string narrow_impl(const wchar_t *str, std::size_t str_size) {
#if CLI11_HAS_CODECVT
#ifdef _WIN32
return std::wstring_convert<std::codecvt_utf8_utf16<wchar_t>>().to_bytes(str, str + str_size);
#else
return std::wstring_convert<std::codecvt_utf8<wchar_t>>().to_bytes(str, str + str_size);
#endif // _WIN32
#else // CLI11_HAS_CODECVT
(void)str_size;
std::mbstate_t state = std::mbstate_t();
const wchar_t *it = str;
std::string old_locale = std::setlocale(LC_ALL, nullptr);
auto sg = scope_guard([&] { std::setlocale(LC_ALL, old_locale.c_str()); });
set_unicode_locale();
std::size_t new_size = std::wcsrtombs(nullptr, &it, 0, &state);
if(new_size == static_cast<std::size_t>(-1)) {
throw std::runtime_error("CLI::narrow: conversion error in std::wcsrtombs at offset " +
std::to_string(it - str));
}
std::string result(new_size, '\0');
std::wcsrtombs(const_cast<char *>(result.data()), &str, new_size, &state);
return result;
#endif // CLI11_HAS_CODECVT
}
CLI11_INLINE std::wstring widen_impl(const char *str, std::size_t str_size) {
#if CLI11_HAS_CODECVT
#ifdef _WIN32
return std::wstring_convert<std::codecvt_utf8_utf16<wchar_t>>().from_bytes(str, str + str_size);
#else
return std::wstring_convert<std::codecvt_utf8<wchar_t>>().from_bytes(str, str + str_size);
#endif // _WIN32
#else // CLI11_HAS_CODECVT
(void)str_size;
std::mbstate_t state = std::mbstate_t();
const char *it = str;
std::string old_locale = std::setlocale(LC_ALL, nullptr);
auto sg = scope_guard([&] { std::setlocale(LC_ALL, old_locale.c_str()); });
set_unicode_locale();
std::size_t new_size = std::mbsrtowcs(nullptr, &it, 0, &state);
if(new_size == static_cast<std::size_t>(-1)) {
throw std::runtime_error("CLI::widen: conversion error in std::mbsrtowcs at offset " +
std::to_string(it - str));
}
std::wstring result(new_size, L'\0');
std::mbsrtowcs(const_cast<wchar_t *>(result.data()), &str, new_size, &state);
return result;
#endif // CLI11_HAS_CODECVT
}
CLI11_DIAGNOSTIC_POP
} // namespace detail
CLI11_INLINE std::string narrow(const wchar_t *str, std::size_t str_size) { return detail::narrow_impl(str, str_size); }
CLI11_INLINE std::string narrow(const std::wstring &str) { return detail::narrow_impl(str.data(), str.size()); }
// Flawfinder: ignore
CLI11_INLINE std::string narrow(const wchar_t *str) { return detail::narrow_impl(str, std::wcslen(str)); }
CLI11_INLINE std::wstring widen(const char *str, std::size_t str_size) { return detail::widen_impl(str, str_size); }
CLI11_INLINE std::wstring widen(const std::string &str) { return detail::widen_impl(str.data(), str.size()); }
// Flawfinder: ignore
CLI11_INLINE std::wstring widen(const char *str) { return detail::widen_impl(str, std::strlen(str)); }
#ifdef CLI11_CPP17
CLI11_INLINE std::string narrow(std::wstring_view str) { return detail::narrow_impl(str.data(), str.size()); }
CLI11_INLINE std::wstring widen(std::string_view str) { return detail::widen_impl(str.data(), str.size()); }
#endif // CLI11_CPP17
#if defined CLI11_HAS_FILESYSTEM && CLI11_HAS_FILESYSTEM > 0
CLI11_INLINE std::filesystem::path to_path(std::string_view str) {
return std::filesystem::path{
#ifdef _WIN32
widen(str)
#else
str
#endif // _WIN32
};
}
#endif // CLI11_HAS_FILESYSTEM
namespace detail {
#ifdef _WIN32
/// Decode and return UTF-8 argv from GetCommandLineW.
CLI11_INLINE std::vector<std::string> compute_win32_argv();
#endif
} // namespace detail
namespace detail {
#ifdef _WIN32
CLI11_INLINE std::vector<std::string> compute_win32_argv() {
std::vector<std::string> result;
int argc = 0;
auto deleter = [](wchar_t **ptr) { LocalFree(ptr); };
// NOLINTBEGIN(*-avoid-c-arrays)
auto wargv = std::unique_ptr<wchar_t *[], decltype(deleter)>(CommandLineToArgvW(GetCommandLineW(), &argc), deleter);
// NOLINTEND(*-avoid-c-arrays)
if(wargv == nullptr) {
throw std::runtime_error("CommandLineToArgvW failed with code " + std::to_string(GetLastError()));
}
result.reserve(static_cast<size_t>(argc));
for(size_t i = 0; i < static_cast<size_t>(argc); ++i) {
result.push_back(narrow(wargv[i]));
}
return result;
}
#endif
} // namespace detail
/// Include the items in this namespace to get free conversion of enums to/from streams.
/// (This is available inside CLI as well, so CLI11 will use this without a using statement).
namespace enums {
/// output streaming for enumerations
template <typename T, typename = typename std::enable_if<std::is_enum<T>::value>::type>
std::ostream &operator<<(std::ostream &in, const T &item) {
// make sure this is out of the detail namespace otherwise it won't be found when needed
return in << static_cast<typename std::underlying_type<T>::type>(item);
}
} // namespace enums
/// Export to CLI namespace
using enums::operator<<;
namespace detail {
/// a constant defining an expected max vector size defined to be a big number that could be multiplied by 4 and not
/// produce overflow for some expected uses
constexpr int expected_max_vector_size{1 << 29};
// Based on http://stackoverflow.com/questions/236129/split-a-string-in-c
/// Split a string by a delim
CLI11_INLINE std::vector<std::string> split(const std::string &s, char delim);
/// Simple function to join a string
template <typename T> std::string join(const T &v, std::string delim = ",") {
std::ostringstream s;
auto beg = std::begin(v);
auto end = std::end(v);
if(beg != end)
s << *beg++;
while(beg != end) {
s << delim << *beg++;
}
return s.str();
}
/// Simple function to join a string from processed elements
template <typename T,
typename Callable,
typename = typename std::enable_if<!std::is_constructible<std::string, Callable>::value>::type>
std::string join(const T &v, Callable func, std::string delim = ",") {
std::ostringstream s;
auto beg = std::begin(v);
auto end = std::end(v);
auto loc = s.tellp();
while(beg != end) {
auto nloc = s.tellp();
if(nloc > loc) {
s << delim;
loc = nloc;
}
s << func(*beg++);
}
return s.str();
}
/// Join a string in reverse order
template <typename T> std::string rjoin(const T &v, std::string delim = ",") {
std::ostringstream s;
for(std::size_t start = 0; start < v.size(); start++) {
if(start > 0)
s << delim;
s << v[v.size() - start - 1];
}
return s.str();
}
// Based roughly on http://stackoverflow.com/questions/25829143/c-trim-whitespace-from-a-string
/// Trim whitespace from left of string
CLI11_INLINE std::string &ltrim(std::string &str);
/// Trim anything from left of string
CLI11_INLINE std::string &ltrim(std::string &str, const std::string &filter);
/// Trim whitespace from right of string
CLI11_INLINE std::string &rtrim(std::string &str);
/// Trim anything from right of string
CLI11_INLINE std::string &rtrim(std::string &str, const std::string &filter);
/// Trim whitespace from string
inline std::string &trim(std::string &str) { return ltrim(rtrim(str)); }
/// Trim anything from string
inline std::string &trim(std::string &str, const std::string filter) { return ltrim(rtrim(str, filter), filter); }
/// Make a copy of the string and then trim it
inline std::string trim_copy(const std::string &str) {
std::string s = str;
return trim(s);
}
/// remove quotes at the front and back of a string either '"' or '\''
CLI11_INLINE std::string &remove_quotes(std::string &str);
/// remove quotes from all elements of a string vector and process escaped components
CLI11_INLINE void remove_quotes(std::vector<std::string> &args);
/// Add a leader to the beginning of all new lines (nothing is added
/// at the start of the first line). `"; "` would be for ini files
///
/// Can't use Regex, or this would be a subs.
CLI11_INLINE std::string fix_newlines(const std::string &leader, std::string input);
/// Make a copy of the string and then trim it, any filter string can be used (any char in string is filtered)
inline std::string trim_copy(const std::string &str, const std::string &filter) {
std::string s = str;
return trim(s, filter);
}
/// Print a two part "help" string
CLI11_INLINE std::ostream &
format_help(std::ostream &out, std::string name, const std::string &description, std::size_t wid);
/// Print subcommand aliases
CLI11_INLINE std::ostream &format_aliases(std::ostream &out, const std::vector<std::string> &aliases, std::size_t wid);
/// Verify the first character of an option
/// - is a trigger character, ! has special meaning and new lines would just be annoying to deal with
template <typename T> bool valid_first_char(T c) {
return ((c != '-') && (static_cast<unsigned char>(c) > 33)); // space and '!' not allowed
}
/// Verify following characters of an option
template <typename T> bool valid_later_char(T c) {
// = and : are value separators, { has special meaning for option defaults,
// and control codes other than tab would just be annoying to deal with in many places allowing space here has too
// much potential for inadvertent entry errors and bugs
return ((c != '=') && (c != ':') && (c != '{') && ((static_cast<unsigned char>(c) > 32) || c == '\t'));
}
/// Verify an option/subcommand name
CLI11_INLINE bool valid_name_string(const std::string &str);
/// Verify an app name
inline bool valid_alias_name_string(const std::string &str) {
static const std::string badChars(std::string("\n") + '\0');
return (str.find_first_of(badChars) == std::string::npos);
}
/// check if a string is a container segment separator (empty or "%%")
inline bool is_separator(const std::string &str) {
static const std::string sep("%%");
return (str.empty() || str == sep);
}
/// Verify that str consists of letters only
inline bool isalpha(const std::string &str) {
return std::all_of(str.begin(), str.end(), [](char c) { return std::isalpha(c, std::locale()); });
}
/// Return a lower case version of a string
inline std::string to_lower(std::string str) {
std::transform(std::begin(str), std::end(str), std::begin(str), [](const std::string::value_type &x) {
return std::tolower(x, std::locale());
});
return str;
}
/// remove underscores from a string
inline std::string remove_underscore(std::string str) {
str.erase(std::remove(std::begin(str), std::end(str), '_'), std::end(str));
return str;
}
/// Find and replace a substring with another substring
CLI11_INLINE std::string find_and_replace(std::string str, std::string from, std::string to);
/// check if the flag definitions has possible false flags
inline bool has_default_flag_values(const std::string &flags) {
return (flags.find_first_of("{!") != std::string::npos);
}
CLI11_INLINE void remove_default_flag_values(std::string &flags);
/// Check if a string is a member of a list of strings and optionally ignore case or ignore underscores
CLI11_INLINE std::ptrdiff_t find_member(std::string name,
const std::vector<std::string> names,
bool ignore_case = false,
bool ignore_underscore = false);
/// Find a trigger string and call a modify callable function that takes the current string and starting position of the
/// trigger and returns the position in the string to search for the next trigger string
template <typename Callable> inline std::string find_and_modify(std::string str, std::string trigger, Callable modify) {
std::size_t start_pos = 0;
while((start_pos = str.find(trigger, start_pos)) != std::string::npos) {
start_pos = modify(str, start_pos);
}
return str;
}
/// close a sequence of characters indicated by a closure character. Brackets allows sub sequences
/// recognized bracket sequences include "'`[(<{ other closure characters are assumed to be literal strings
CLI11_INLINE std::size_t close_sequence(const std::string &str, std::size_t start, char closure_char);
/// Split a string '"one two" "three"' into 'one two', 'three'
/// Quote characters can be ` ' or " or bracket characters [{(< with matching to the matching bracket
CLI11_INLINE std::vector<std::string> split_up(std::string str, char delimiter = '\0');
/// get the value of an environmental variable or empty string if empty
CLI11_INLINE std::string get_environment_value(const std::string &env_name);
/// This function detects an equal or colon followed by an escaped quote after an argument
/// then modifies the string to replace the equality with a space. This is needed
/// to allow the split up function to work properly and is intended to be used with the find_and_modify function
/// the return value is the offset+1 which is required by the find_and_modify function.
CLI11_INLINE std::size_t escape_detect(std::string &str, std::size_t offset);
/// @brief detect if a string has escapable characters
/// @param str the string to do the detection on
/// @return true if the string has escapable characters
CLI11_INLINE bool has_escapable_character(const std::string &str);
/// @brief escape all escapable characters
/// @param str the string to escape
/// @return a string with the escapble characters escaped with '\'
CLI11_INLINE std::string add_escaped_characters(const std::string &str);
/// @brief replace the escaped characters with their equivalent
CLI11_INLINE std::string remove_escaped_characters(const std::string &str);
/// generate a string with all non printable characters escaped to hex codes
CLI11_INLINE std::string binary_escape_string(const std::string &string_to_escape);
CLI11_INLINE bool is_binary_escaped_string(const std::string &escaped_string);
/// extract an escaped binary_string
CLI11_INLINE std::string extract_binary_string(const std::string &escaped_string);
/// process a quoted string, remove the quotes and if appropriate handle escaped characters
CLI11_INLINE bool process_quoted_string(std::string &str, char string_char = '\"', char literal_char = '\'');
} // namespace detail
namespace detail {
CLI11_INLINE std::vector<std::string> split(const std::string &s, char delim) {
std::vector<std::string> elems;
// Check to see if empty string, give consistent result
if(s.empty()) {
elems.emplace_back();
} else {
std::stringstream ss;
ss.str(s);
std::string item;
while(std::getline(ss, item, delim)) {
elems.push_back(item);
}
}
return elems;
}
CLI11_INLINE std::string &ltrim(std::string &str) {
auto it = std::find_if(str.begin(), str.end(), [](char ch) { return !std::isspace<char>(ch, std::locale()); });
str.erase(str.begin(), it);
return str;
}
CLI11_INLINE std::string &ltrim(std::string &str, const std::string &filter) {
auto it = std::find_if(str.begin(), str.end(), [&filter](char ch) { return filter.find(ch) == std::string::npos; });
str.erase(str.begin(), it);
return str;
}
CLI11_INLINE std::string &rtrim(std::string &str) {
auto it = std::find_if(str.rbegin(), str.rend(), [](char ch) { return !std::isspace<char>(ch, std::locale()); });
str.erase(it.base(), str.end());
return str;
}
CLI11_INLINE std::string &rtrim(std::string &str, const std::string &filter) {
auto it =
std::find_if(str.rbegin(), str.rend(), [&filter](char ch) { return filter.find(ch) == std::string::npos; });
str.erase(it.base(), str.end());
return str;
}
CLI11_INLINE std::string &remove_quotes(std::string &str) {
if(str.length() > 1 && (str.front() == '"' || str.front() == '\'' || str.front() == '`')) {
if(str.front() == str.back()) {
str.pop_back();
str.erase(str.begin(), str.begin() + 1);
}
}
return str;
}
CLI11_INLINE std::string &remove_outer(std::string &str, char key) {
if(str.length() > 1 && (str.front() == key)) {
if(str.front() == str.back()) {
str.pop_back();
str.erase(str.begin(), str.begin() + 1);
}
}
return str;
}
CLI11_INLINE std::string fix_newlines(const std::string &leader, std::string input) {
std::string::size_type n = 0;
while(n != std::string::npos && n < input.size()) {
n = input.find('\n', n);
if(n != std::string::npos) {
input = input.substr(0, n + 1) + leader + input.substr(n + 1);
n += leader.size();
}
}
return input;
}
CLI11_INLINE std::ostream &
format_help(std::ostream &out, std::string name, const std::string &description, std::size_t wid) {
name = " " + name;
out << std::setw(static_cast<int>(wid)) << std::left << name;
if(!description.empty()) {
if(name.length() >= wid)
out << "\n" << std::setw(static_cast<int>(wid)) << "";
for(const char c : description) {
out.put(c);
if(c == '\n') {
out << std::setw(static_cast<int>(wid)) << "";
}
}
}
out << "\n";
return out;
}
CLI11_INLINE std::ostream &format_aliases(std::ostream &out, const std::vector<std::string> &aliases, std::size_t wid) {
if(!aliases.empty()) {
out << std::setw(static_cast<int>(wid)) << " aliases: ";
bool front = true;
for(const auto &alias : aliases) {
if(!front) {
out << ", ";
} else {
front = false;
}
out << detail::fix_newlines(" ", alias);
}
out << "\n";
}
return out;
}
CLI11_INLINE bool valid_name_string(const std::string &str) {
if(str.empty() || !valid_first_char(str[0])) {
return false;
}
auto e = str.end();
for(auto c = str.begin() + 1; c != e; ++c)
if(!valid_later_char(*c))
return false;
return true;
}
CLI11_INLINE std::string find_and_replace(std::string str, std::string from, std::string to) {
std::size_t start_pos = 0;
while((start_pos = str.find(from, start_pos)) != std::string::npos) {
str.replace(start_pos, from.length(), to);
start_pos += to.length();
}
return str;
}
CLI11_INLINE void remove_default_flag_values(std::string &flags) {
auto loc = flags.find_first_of('{', 2);
while(loc != std::string::npos) {
auto finish = flags.find_first_of("},", loc + 1);
if((finish != std::string::npos) && (flags[finish] == '}')) {
flags.erase(flags.begin() + static_cast<std::ptrdiff_t>(loc),
flags.begin() + static_cast<std::ptrdiff_t>(finish) + 1);
}
loc = flags.find_first_of('{', loc + 1);
}
flags.erase(std::remove(flags.begin(), flags.end(), '!'), flags.end());
}
CLI11_INLINE std::ptrdiff_t
find_member(std::string name, const std::vector<std::string> names, bool ignore_case, bool ignore_underscore) {
auto it = std::end(names);
if(ignore_case) {
if(ignore_underscore) {
name = detail::to_lower(detail::remove_underscore(name));
it = std::find_if(std::begin(names), std::end(names), [&name](std::string local_name) {
return detail::to_lower(detail::remove_underscore(local_name)) == name;
});
} else {
name = detail::to_lower(name);
it = std::find_if(std::begin(names), std::end(names), [&name](std::string local_name) {
return detail::to_lower(local_name) == name;
});
}
} else if(ignore_underscore) {
name = detail::remove_underscore(name);
it = std::find_if(std::begin(names), std::end(names), [&name](std::string local_name) {
return detail::remove_underscore(local_name) == name;
});
} else {
it = std::find(std::begin(names), std::end(names), name);
}
return (it != std::end(names)) ? (it - std::begin(names)) : (-1);
}
static const std::string escapedChars("\b\t\n\f\r\"\\");
static const std::string escapedCharsCode("btnfr\"\\");
static const std::string bracketChars{"\"'`[(<{"};
static const std::string matchBracketChars("\"'`])>}");
CLI11_INLINE bool has_escapable_character(const std::string &str) {
return (str.find_first_of(escapedChars) != std::string::npos);
}
CLI11_INLINE std::string add_escaped_characters(const std::string &str) {
std::string out;
out.reserve(str.size() + 4);
for(char s : str) {
auto sloc = escapedChars.find_first_of(s);
if(sloc != std::string::npos) {
out.push_back('\\');
out.push_back(escapedCharsCode[sloc]);
} else {
out.push_back(s);
}
}
return out;
}
CLI11_INLINE std::uint32_t hexConvert(char hc) {
int hcode{0};
if(hc >= '0' && hc <= '9') {
hcode = (hc - '0');
} else if(hc >= 'A' && hc <= 'F') {
hcode = (hc - 'A' + 10);
} else if(hc >= 'a' && hc <= 'f') {
hcode = (hc - 'a' + 10);
} else {
hcode = -1;
}
return static_cast<uint32_t>(hcode);
}
CLI11_INLINE char make_char(std::uint32_t code) { return static_cast<char>(static_cast<unsigned char>(code)); }
CLI11_INLINE void append_codepoint(std::string &str, std::uint32_t code) {
if(code < 0x80) { // ascii code equivalent
str.push_back(static_cast<char>(code));
} else if(code < 0x800) { // \u0080 to \u07FF
// 110yyyyx 10xxxxxx; 0x3f == 0b0011'1111
str.push_back(make_char(0xC0 | code >> 6));
str.push_back(make_char(0x80 | (code & 0x3F)));
} else if(code < 0x10000) { // U+0800...U+FFFF
if(0xD800 <= code && code <= 0xDFFF) {
throw std::invalid_argument("[0xD800, 0xDFFF] are not valid UTF-8.");
}
// 1110yyyy 10yxxxxx 10xxxxxx
str.push_back(make_char(0xE0 | code >> 12));
str.push_back(make_char(0x80 | (code >> 6 & 0x3F)));
str.push_back(make_char(0x80 | (code & 0x3F)));
} else if(code < 0x110000) { // U+010000 ... U+10FFFF
// 11110yyy 10yyxxxx 10xxxxxx 10xxxxxx
str.push_back(make_char(0xF0 | code >> 18));
str.push_back(make_char(0x80 | (code >> 12 & 0x3F)));
str.push_back(make_char(0x80 | (code >> 6 & 0x3F)));
str.push_back(make_char(0x80 | (code & 0x3F)));
}
}
CLI11_INLINE std::string remove_escaped_characters(const std::string &str) {
std::string out;
out.reserve(str.size());
for(auto loc = str.begin(); loc < str.end(); ++loc) {
if(*loc == '\\') {
if(str.end() - loc < 2) {
throw std::invalid_argument("invalid escape sequence " + str);
}
auto ecloc = escapedCharsCode.find_first_of(*(loc + 1));
if(ecloc != std::string::npos) {
out.push_back(escapedChars[ecloc]);
++loc;
} else if(*(loc + 1) == 'u') {
// must have 4 hex characters
if(str.end() - loc < 6) {
throw std::invalid_argument("unicode sequence must have 4 hex codes " + str);
}
std::uint32_t code{0};
std::uint32_t mplier{16 * 16 * 16};
for(int ii = 2; ii < 6; ++ii) {
std::uint32_t res = hexConvert(*(loc + ii));
if(res > 0x0F) {
throw std::invalid_argument("unicode sequence must have 4 hex codes " + str);
}
code += res * mplier;
mplier = mplier / 16;
}
append_codepoint(out, code);
loc += 5;
} else if(*(loc + 1) == 'U') {
// must have 8 hex characters
if(str.end() - loc < 10) {
throw std::invalid_argument("unicode sequence must have 8 hex codes " + str);
}
std::uint32_t code{0};
std::uint32_t mplier{16 * 16 * 16 * 16 * 16 * 16 * 16};
for(int ii = 2; ii < 10; ++ii) {
std::uint32_t res = hexConvert(*(loc + ii));
if(res > 0x0F) {
throw std::invalid_argument("unicode sequence must have 8 hex codes " + str);
}
code += res * mplier;
mplier = mplier / 16;
}
append_codepoint(out, code);
loc += 9;
} else if(*(loc + 1) == '0') {
out.push_back('\0');
++loc;
} else {
throw std::invalid_argument(std::string("unrecognized escape sequence \\") + *(loc + 1) + " in " + str);
}
} else {
out.push_back(*loc);
}
}
return out;
}
CLI11_INLINE std::size_t close_string_quote(const std::string &str, std::size_t start, char closure_char) {
std::size_t loc{0};
for(loc = start + 1; loc < str.size(); ++loc) {
if(str[loc] == closure_char) {
break;
}
if(str[loc] == '\\') {
// skip the next character for escaped sequences
++loc;
}
}
return loc;
}
CLI11_INLINE std::size_t close_literal_quote(const std::string &str, std::size_t start, char closure_char) {
auto loc = str.find_first_of(closure_char, start + 1);
return (loc != std::string::npos ? loc : str.size());
}
CLI11_INLINE std::size_t close_sequence(const std::string &str, std::size_t start, char closure_char) {
auto bracket_loc = matchBracketChars.find(closure_char);
switch(bracket_loc) {
case 0:
return close_string_quote(str, start, closure_char);
case 1:
case 2:
case std::string::npos:
return close_literal_quote(str, start, closure_char);
default:
break;
}
std::string closures(1, closure_char);
auto loc = start + 1;
while(loc < str.size()) {
if(str[loc] == closures.back()) {
closures.pop_back();
if(closures.empty()) {
return loc;
}
}
bracket_loc = bracketChars.find(str[loc]);
if(bracket_loc != std::string::npos) {
switch(bracket_loc) {
case 0:
loc = close_string_quote(str, loc, str[loc]);
break;
case 1:
case 2:
loc = close_literal_quote(str, loc, str[loc]);
break;
default:
closures.push_back(matchBracketChars[bracket_loc]);
break;
}
}
++loc;
}
if(loc > str.size()) {
loc = str.size();
}
return loc;
}
CLI11_INLINE std::vector<std::string> split_up(std::string str, char delimiter) {
auto find_ws = [delimiter](char ch) {
return (delimiter == '\0') ? std::isspace<char>(ch, std::locale()) : (ch == delimiter);
};
trim(str);
std::vector<std::string> output;
while(!str.empty()) {
if(bracketChars.find_first_of(str[0]) != std::string::npos) {
auto bracketLoc = bracketChars.find_first_of(str[0]);
auto end = close_sequence(str, 0, matchBracketChars[bracketLoc]);
if(end >= str.size()) {
output.push_back(std::move(str));
str.clear();
} else {
output.push_back(str.substr(0, end + 1));
if(end + 2 < str.size()) {
str = str.substr(end + 2);
} else {
str.clear();
}
}
} else {
auto it = std::find_if(std::begin(str), std::end(str), find_ws);
if(it != std::end(str)) {
std::string value = std::string(str.begin(), it);
output.push_back(value);
str = std::string(it + 1, str.end());
} else {
output.push_back(str);
str.clear();
}
}
trim(str);
}
return output;
}
CLI11_INLINE std::size_t escape_detect(std::string &str, std::size_t offset) {
auto next = str[offset + 1];
if((next == '\"') || (next == '\'') || (next == '`')) {
auto astart = str.find_last_of("-/ \"\'`", offset - 1);
if(astart != std::string::npos) {
if(str[astart] == ((str[offset] == '=') ? '-' : '/'))
str[offset] = ' '; // interpret this as a space so the split_up works properly
}
}
return offset + 1;
}
CLI11_INLINE std::string binary_escape_string(const std::string &string_to_escape) {
// s is our escaped output string
std::string escaped_string{};
// loop through all characters
for(char c : string_to_escape) {
// check if a given character is printable
// the cast is necessary to avoid undefined behaviour
if(isprint(static_cast<unsigned char>(c)) == 0) {
std::stringstream stream;
// if the character is not printable
// we'll convert it to a hex string using a stringstream
// note that since char is signed we have to cast it to unsigned first
stream << std::hex << static_cast<unsigned int>(static_cast<unsigned char>(c));
std::string code = stream.str();
escaped_string += std::string("\\x") + (code.size() < 2 ? "0" : "") + code;
} else {
escaped_string.push_back(c);
}
}
if(escaped_string != string_to_escape) {
auto sqLoc = escaped_string.find('\'');
while(sqLoc != std::string::npos) {
escaped_string.replace(sqLoc, sqLoc + 1, "\\x27");
sqLoc = escaped_string.find('\'');
}
escaped_string.insert(0, "'B\"(");
escaped_string.push_back(')');
escaped_string.push_back('"');
escaped_string.push_back('\'');
}
return escaped_string;
}
CLI11_INLINE bool is_binary_escaped_string(const std::string &escaped_string) {
size_t ssize = escaped_string.size();
if(escaped_string.compare(0, 3, "B\"(") == 0 && escaped_string.compare(ssize - 2, 2, ")\"") == 0) {
return true;
}
return (escaped_string.compare(0, 4, "'B\"(") == 0 && escaped_string.compare(ssize - 3, 3, ")\"'") == 0);
}
CLI11_INLINE std::string extract_binary_string(const std::string &escaped_string) {
std::size_t start{0};
std::size_t tail{0};
size_t ssize = escaped_string.size();
if(escaped_string.compare(0, 3, "B\"(") == 0 && escaped_string.compare(ssize - 2, 2, ")\"") == 0) {
start = 3;
tail = 2;
} else if(escaped_string.compare(0, 4, "'B\"(") == 0 && escaped_string.compare(ssize - 3, 3, ")\"'") == 0) {
start = 4;
tail = 3;
}
if(start == 0) {
return escaped_string;
}
std::string outstring;
outstring.reserve(ssize - start - tail);
std::size_t loc = start;
while(loc < ssize - tail) {
// ssize-2 to skip )" at the end
if(escaped_string[loc] == '\\' && (escaped_string[loc + 1] == 'x' || escaped_string[loc + 1] == 'X')) {
auto c1 = escaped_string[loc + 2];
auto c2 = escaped_string[loc + 3];
std::uint32_t res1 = hexConvert(c1);
std::uint32_t res2 = hexConvert(c2);
if(res1 <= 0x0F && res2 <= 0x0F) {
loc += 4;
outstring.push_back(static_cast<char>(res1 * 16 + res2));
continue;
}
}
outstring.push_back(escaped_string[loc]);
++loc;
}
return outstring;
}
CLI11_INLINE void remove_quotes(std::vector<std::string> &args) {
for(auto &arg : args) {
if(arg.front() == '\"' && arg.back() == '\"') {
remove_quotes(arg);
// only remove escaped for string arguments not literal strings
arg = remove_escaped_characters(arg);
} else {
remove_quotes(arg);
}
}
}
CLI11_INLINE bool process_quoted_string(std::string &str, char string_char, char literal_char) {
if(str.size() <= 1) {
return false;
}
if(detail::is_binary_escaped_string(str)) {
str = detail::extract_binary_string(str);
return true;
}
if(str.front() == string_char && str.back() == string_char) {
detail::remove_outer(str, string_char);
if(str.find_first_of('\\') != std::string::npos) {
str = detail::remove_escaped_characters(str);
}
return true;
}
if((str.front() == literal_char || str.front() == '`') && str.back() == str.front()) {
detail::remove_outer(str, str.front());
return true;
}
return false;
}
std::string get_environment_value(const std::string &env_name) {
char *buffer = nullptr;
std::string ename_string;
#ifdef _MSC_VER
// Windows version
std::size_t sz = 0;
if(_dupenv_s(&buffer, &sz, env_name.c_str()) == 0 && buffer != nullptr) {
ename_string = std::string(buffer);
free(buffer);
}
#else
// This also works on Windows, but gives a warning
buffer = std::getenv(env_name.c_str());
if(buffer != nullptr) {
ename_string = std::string(buffer);
}
#endif
return ename_string;
}
} // namespace detail
// Use one of these on all error classes.
// These are temporary and are undef'd at the end of this file.
#define CLI11_ERROR_DEF(parent, name) \
protected: \
name(std::string ename, std::string msg, int exit_code) : parent(std::move(ename), std::move(msg), exit_code) {} \
name(std::string ename, std::string msg, ExitCodes exit_code) \
: parent(std::move(ename), std::move(msg), exit_code) {} \
\
public: \
name(std::string msg, ExitCodes exit_code) : parent(#name, std::move(msg), exit_code) {} \
name(std::string msg, int exit_code) : parent(#name, std::move(msg), exit_code) {}
// This is added after the one above if a class is used directly and builds its own message
#define CLI11_ERROR_SIMPLE(name) \
explicit name(std::string msg) : name(#name, msg, ExitCodes::name) {}
/// These codes are part of every error in CLI. They can be obtained from e using e.exit_code or as a quick shortcut,
/// int values from e.get_error_code().
enum class ExitCodes {
Success = 0,
IncorrectConstruction = 100,
BadNameString,
OptionAlreadyAdded,
FileError,
ConversionError,
ValidationError,
RequiredError,
RequiresError,
ExcludesError,
ExtrasError,
ConfigError,
InvalidError,
HorribleError,
OptionNotFound,
ArgumentMismatch,
BaseClass = 127
};
// Error definitions
/// @defgroup error_group Errors
/// @brief Errors thrown by CLI11
///
/// These are the errors that can be thrown. Some of them, like CLI::Success, are not really errors.
/// @{
/// All errors derive from this one
class Error : public std::runtime_error {
int actual_exit_code;
std::string error_name{"Error"};
public:
CLI11_NODISCARD int get_exit_code() const { return actual_exit_code; }
CLI11_NODISCARD std::string get_name() const { return error_name; }
Error(std::string name, std::string msg, int exit_code = static_cast<int>(ExitCodes::BaseClass))
: runtime_error(msg), actual_exit_code(exit_code), error_name(std::move(name)) {}
Error(std::string name, std::string msg, ExitCodes exit_code) : Error(name, msg, static_cast<int>(exit_code)) {}
};
// Note: Using Error::Error constructors does not work on GCC 4.7
/// Construction errors (not in parsing)
class ConstructionError : public Error {
CLI11_ERROR_DEF(Error, ConstructionError)
};
/// Thrown when an option is set to conflicting values (non-vector and multi args, for example)
class IncorrectConstruction : public ConstructionError {
CLI11_ERROR_DEF(ConstructionError, IncorrectConstruction)
CLI11_ERROR_SIMPLE(IncorrectConstruction)
static IncorrectConstruction PositionalFlag(std::string name) {
return IncorrectConstruction(name + ": Flags cannot be positional");
}
static IncorrectConstruction Set0Opt(std::string name) {
return IncorrectConstruction(name + ": Cannot set 0 expected, use a flag instead");
}
static IncorrectConstruction SetFlag(std::string name) {
return IncorrectConstruction(name + ": Cannot set an expected number for flags");
}
static IncorrectConstruction ChangeNotVector(std::string name) {
return IncorrectConstruction(name + ": You can only change the expected arguments for vectors");
}
static IncorrectConstruction AfterMultiOpt(std::string name) {
return IncorrectConstruction(
name + ": You can't change expected arguments after you've changed the multi option policy!");
}
static IncorrectConstruction MissingOption(std::string name) {
return IncorrectConstruction("Option " + name + " is not defined");
}
static IncorrectConstruction MultiOptionPolicy(std::string name) {
return IncorrectConstruction(name + ": multi_option_policy only works for flags and exact value options");
}
};
/// Thrown on construction of a bad name
class BadNameString : public ConstructionError {
CLI11_ERROR_DEF(ConstructionError, BadNameString)
CLI11_ERROR_SIMPLE(BadNameString)
static BadNameString OneCharName(std::string name) { return BadNameString("Invalid one char name: " + name); }
static BadNameString MissingDash(std::string name) {
return BadNameString("Long names strings require 2 dashes " + name);
}
static BadNameString BadLongName(std::string name) { return BadNameString("Bad long name: " + name); }
static BadNameString BadPositionalName(std::string name) {
return BadNameString("Invalid positional Name: " + name);
}
static BadNameString DashesOnly(std::string name) {
return BadNameString("Must have a name, not just dashes: " + name);
}
static BadNameString MultiPositionalNames(std::string name) {
return BadNameString("Only one positional name allowed, remove: " + name);
}
};
/// Thrown when an option already exists
class OptionAlreadyAdded : public ConstructionError {
CLI11_ERROR_DEF(ConstructionError, OptionAlreadyAdded)
explicit OptionAlreadyAdded(std::string name)
: OptionAlreadyAdded(name + " is already added", ExitCodes::OptionAlreadyAdded) {}
static OptionAlreadyAdded Requires(std::string name, std::string other) {
return {name + " requires " + other, ExitCodes::OptionAlreadyAdded};
}
static OptionAlreadyAdded Excludes(std::string name, std::string other) {
return {name + " excludes " + other, ExitCodes::OptionAlreadyAdded};
}
};
// Parsing errors
/// Anything that can error in Parse
class ParseError : public Error {
CLI11_ERROR_DEF(Error, ParseError)
};
// Not really "errors"
/// This is a successful completion on parsing, supposed to exit
class Success : public ParseError {
CLI11_ERROR_DEF(ParseError, Success)
Success() : Success("Successfully completed, should be caught and quit", ExitCodes::Success) {}
};
/// -h or --help on command line
class CallForHelp : public Success {
CLI11_ERROR_DEF(Success, CallForHelp)
CallForHelp() : CallForHelp("This should be caught in your main function, see examples", ExitCodes::Success) {}
};
/// Usually something like --help-all on command line
class CallForAllHelp : public Success {
CLI11_ERROR_DEF(Success, CallForAllHelp)
CallForAllHelp()
: CallForAllHelp("This should be caught in your main function, see examples", ExitCodes::Success) {}
};
/// -v or --version on command line
class CallForVersion : public Success {
CLI11_ERROR_DEF(Success, CallForVersion)
CallForVersion()
: CallForVersion("This should be caught in your main function, see examples", ExitCodes::Success) {}
};
/// Does not output a diagnostic in CLI11_PARSE, but allows main() to return with a specific error code.
class RuntimeError : public ParseError {
CLI11_ERROR_DEF(ParseError, RuntimeError)
explicit RuntimeError(int exit_code = 1) : RuntimeError("Runtime error", exit_code) {}
};
/// Thrown when parsing an INI file and it is missing
class FileError : public ParseError {
CLI11_ERROR_DEF(ParseError, FileError)
CLI11_ERROR_SIMPLE(FileError)
static FileError Missing(std::string name) { return FileError(name + " was not readable (missing?)"); }
};
/// Thrown when conversion call back fails, such as when an int fails to coerce to a string
class ConversionError : public ParseError {
CLI11_ERROR_DEF(ParseError, ConversionError)
CLI11_ERROR_SIMPLE(ConversionError)
ConversionError(std::string member, std::string name)
: ConversionError("The value " + member + " is not an allowed value for " + name) {}
ConversionError(std::string name, std::vector<std::string> results)
: ConversionError("Could not convert: " + name + " = " + detail::join(results)) {}
static ConversionError TooManyInputsFlag(std::string name) {
return ConversionError(name + ": too many inputs for a flag");
}
static ConversionError TrueFalse(std::string name) {
return ConversionError(name + ": Should be true/false or a number");
}
};
/// Thrown when validation of results fails
class ValidationError : public ParseError {
CLI11_ERROR_DEF(ParseError, ValidationError)
CLI11_ERROR_SIMPLE(ValidationError)
explicit ValidationError(std::string name, std::string msg) : ValidationError(name + ": " + msg) {}
};
/// Thrown when a required option is missing
class RequiredError : public ParseError {
CLI11_ERROR_DEF(ParseError, RequiredError)
explicit RequiredError(std::string name) : RequiredError(name + " is required", ExitCodes::RequiredError) {}
static RequiredError Subcommand(std::size_t min_subcom) {
if(min_subcom == 1) {
return RequiredError("A subcommand");
}
return {"Requires at least " + std::to_string(min_subcom) + " subcommands", ExitCodes::RequiredError};
}
static RequiredError
Option(std::size_t min_option, std::size_t max_option, std::size_t used, const std::string &option_list) {
if((min_option == 1) && (max_option == 1) && (used == 0))
return RequiredError("Exactly 1 option from [" + option_list + "]");
if((min_option == 1) && (max_option == 1) && (used > 1)) {
return {"Exactly 1 option from [" + option_list + "] is required but " + std::to_string(used) +
" were given",
ExitCodes::RequiredError};
}
if((min_option == 1) && (used == 0))
return RequiredError("At least 1 option from [" + option_list + "]");
if(used < min_option) {
return {"Requires at least " + std::to_string(min_option) + " options used but only " +
std::to_string(used) + " were given from [" + option_list + "]",
ExitCodes::RequiredError};
}
if(max_option == 1)
return {"Requires at most 1 options be given from [" + option_list + "]", ExitCodes::RequiredError};
return {"Requires at most " + std::to_string(max_option) + " options be used but " + std::to_string(used) +
" were given from [" + option_list + "]",
ExitCodes::RequiredError};
}
};
/// Thrown when the wrong number of arguments has been received
class ArgumentMismatch : public ParseError {
CLI11_ERROR_DEF(ParseError, ArgumentMismatch)
CLI11_ERROR_SIMPLE(ArgumentMismatch)
ArgumentMismatch(std::string name, int expected, std::size_t received)
: ArgumentMismatch(expected > 0 ? ("Expected exactly " + std::to_string(expected) + " arguments to " + name +
", got " + std::to_string(received))
: ("Expected at least " + std::to_string(-expected) + " arguments to " + name +
", got " + std::to_string(received)),
ExitCodes::ArgumentMismatch) {}
static ArgumentMismatch AtLeast(std::string name, int num, std::size_t received) {
return ArgumentMismatch(name + ": At least " + std::to_string(num) + " required but received " +
std::to_string(received));
}
static ArgumentMismatch AtMost(std::string name, int num, std::size_t received) {
return ArgumentMismatch(name + ": At Most " + std::to_string(num) + " required but received " +
std::to_string(received));
}
static ArgumentMismatch TypedAtLeast(std::string name, int num, std::string type) {
return ArgumentMismatch(name + ": " + std::to_string(num) + " required " + type + " missing");
}
static ArgumentMismatch FlagOverride(std::string name) {
return ArgumentMismatch(name + " was given a disallowed flag override");
}
static ArgumentMismatch PartialType(std::string name, int num, std::string type) {
return ArgumentMismatch(name + ": " + type + " only partially specified: " + std::to_string(num) +
" required for each element");
}
};
/// Thrown when a requires option is missing
class RequiresError : public ParseError {
CLI11_ERROR_DEF(ParseError, RequiresError)
RequiresError(std::string curname, std::string subname)
: RequiresError(curname + " requires " + subname, ExitCodes::RequiresError) {}
};
/// Thrown when an excludes option is present
class ExcludesError : public ParseError {
CLI11_ERROR_DEF(ParseError, ExcludesError)
ExcludesError(std::string curname, std::string subname)
: ExcludesError(curname + " excludes " + subname, ExitCodes::ExcludesError) {}
};
/// Thrown when too many positionals or options are found
class ExtrasError : public ParseError {
CLI11_ERROR_DEF(ParseError, ExtrasError)
explicit ExtrasError(std::vector<std::string> args)
: ExtrasError((args.size() > 1 ? "The following arguments were not expected: "
: "The following argument was not expected: ") +
detail::rjoin(args, " "),
ExitCodes::ExtrasError) {}
ExtrasError(const std::string &name, std::vector<std::string> args)
: ExtrasError(name,
(args.size() > 1 ? "The following arguments were not expected: "
: "The following argument was not expected: ") +
detail::rjoin(args, " "),
ExitCodes::ExtrasError) {}
};
/// Thrown when extra values are found in an INI file
class ConfigError : public ParseError {
CLI11_ERROR_DEF(ParseError, ConfigError)
CLI11_ERROR_SIMPLE(ConfigError)
static ConfigError Extras(std::string item) { return ConfigError("INI was not able to parse " + item); }
static ConfigError NotConfigurable(std::string item) {
return ConfigError(item + ": This option is not allowed in a configuration file");
}
};
/// Thrown when validation fails before parsing
class InvalidError : public ParseError {
CLI11_ERROR_DEF(ParseError, InvalidError)
explicit InvalidError(std::string name)
: InvalidError(name + ": Too many positional arguments with unlimited expected args", ExitCodes::InvalidError) {
}
};
/// This is just a safety check to verify selection and parsing match - you should not ever see it
/// Strings are directly added to this error, but again, it should never be seen.
class HorribleError : public ParseError {
CLI11_ERROR_DEF(ParseError, HorribleError)
CLI11_ERROR_SIMPLE(HorribleError)
};
// After parsing
/// Thrown when counting a non-existent option
class OptionNotFound : public Error {
CLI11_ERROR_DEF(Error, OptionNotFound)
explicit OptionNotFound(std::string name) : OptionNotFound(name + " not found", ExitCodes::OptionNotFound) {}
};
#undef CLI11_ERROR_DEF
#undef CLI11_ERROR_SIMPLE
/// @}
// Type tools
// Utilities for type enabling
namespace detail {
// Based generally on https://rmf.io/cxx11/almost-static-if
/// Simple empty scoped class
enum class enabler {};
/// An instance to use in EnableIf
constexpr enabler dummy = {};
} // namespace detail
/// A copy of enable_if_t from C++14, compatible with C++11.
///
/// We could check to see if C++14 is being used, but it does not hurt to redefine this
/// (even Google does this: https://github.com/google/skia/blob/main/include/private/SkTLogic.h)
/// It is not in the std namespace anyway, so no harm done.
template <bool B, class T = void> using enable_if_t = typename std::enable_if<B, T>::type;
/// A copy of std::void_t from C++17 (helper for C++11 and C++14)
template <typename... Ts> struct make_void {
using type = void;
};
/// A copy of std::void_t from C++17 - same reasoning as enable_if_t, it does not hurt to redefine
template <typename... Ts> using void_t = typename make_void<Ts...>::type;
/// A copy of std::conditional_t from C++14 - same reasoning as enable_if_t, it does not hurt to redefine
template <bool B, class T, class F> using conditional_t = typename std::conditional<B, T, F>::type;
/// Check to see if something is bool (fail check by default)
template <typename T> struct is_bool : std::false_type {};
/// Check to see if something is bool (true if actually a bool)
template <> struct is_bool<bool> : std::true_type {};
/// Check to see if something is a shared pointer
template <typename T> struct is_shared_ptr : std::false_type {};
/// Check to see if something is a shared pointer (True if really a shared pointer)
template <typename T> struct is_shared_ptr<std::shared_ptr<T>> : std::true_type {};
/// Check to see if something is a shared pointer (True if really a shared pointer)
template <typename T> struct is_shared_ptr<const std::shared_ptr<T>> : std::true_type {};
/// Check to see if something is copyable pointer
template <typename T> struct is_copyable_ptr {
static bool const value = is_shared_ptr<T>::value || std::is_pointer<T>::value;
};
/// This can be specialized to override the type deduction for IsMember.
template <typename T> struct IsMemberType {
using type = T;
};
/// The main custom type needed here is const char * should be a string.
template <> struct IsMemberType<const char *> {
using type = std::string;
};
namespace adl_detail {
/// Check for existence of user-supplied lexical_cast.
///
/// This struct has to be in a separate namespace so that it doesn't see our lexical_cast overloads in CLI::detail.
/// Standard says it shouldn't see them if it's defined before the corresponding lexical_cast declarations, but this
/// requires a working implementation of two-phase lookup, and not all compilers can boast that (msvc, ahem).
template <typename T, typename S = std::string> class is_lexical_castable {
template <typename TT, typename SS>
static auto test(int) -> decltype(lexical_cast(std::declval<const SS &>(), std::declval<TT &>()), std::true_type());
template <typename, typename> static auto test(...) -> std::false_type;
public:
static constexpr bool value = decltype(test<T, S>(0))::value;
};
} // namespace adl_detail
namespace detail {
// These are utilities for IsMember and other transforming objects
/// Handy helper to access the element_type generically. This is not part of is_copyable_ptr because it requires that
/// pointer_traits<T> be valid.
/// not a pointer
template <typename T, typename Enable = void> struct element_type {
using type = T;
};
template <typename T> struct element_type<T, typename std::enable_if<is_copyable_ptr<T>::value>::type> {
using type = typename std::pointer_traits<T>::element_type;
};
/// Combination of the element type and value type - remove pointer (including smart pointers) and get the value_type of
/// the container
template <typename T> struct element_value_type {
using type = typename element_type<T>::type::value_type;
};
/// Adaptor for set-like structure: This just wraps a normal container in a few utilities that do almost nothing.
template <typename T, typename _ = void> struct pair_adaptor : std::false_type {
using value_type = typename T::value_type;
using first_type = typename std::remove_const<value_type>::type;
using second_type = typename std::remove_const<value_type>::type;
/// Get the first value (really just the underlying value)
template <typename Q> static auto first(Q &&pair_value) -> decltype(std::forward<Q>(pair_value)) {
return std::forward<Q>(pair_value);
}
/// Get the second value (really just the underlying value)
template <typename Q> static auto second(Q &&pair_value) -> decltype(std::forward<Q>(pair_value)) {
return std::forward<Q>(pair_value);
}
};
/// Adaptor for map-like structure (true version, must have key_type and mapped_type).
/// This wraps a mapped container in a few utilities access it in a general way.
template <typename T>
struct pair_adaptor<
T,
conditional_t<false, void_t<typename T::value_type::first_type, typename T::value_type::second_type>, void>>
: std::true_type {
using value_type = typename T::value_type;
using first_type = typename std::remove_const<typename value_type::first_type>::type;
using second_type = typename std::remove_const<typename value_type::second_type>::type;
/// Get the first value (really just the underlying value)
template <typename Q> static auto first(Q &&pair_value) -> decltype(std::get<0>(std::forward<Q>(pair_value))) {
return std::get<0>(std::forward<Q>(pair_value));
}
/// Get the second value (really just the underlying value)
template <typename Q> static auto second(Q &&pair_value) -> decltype(std::get<1>(std::forward<Q>(pair_value))) {
return std::get<1>(std::forward<Q>(pair_value));
}
};
// Warning is suppressed due to "bug" in gcc<5.0 and gcc 7.0 with c++17 enabled that generates a Wnarrowing warning
// in the unevaluated context even if the function that was using this wasn't used. The standard says narrowing in
// brace initialization shouldn't be allowed but for backwards compatibility gcc allows it in some contexts. It is a
// little fuzzy what happens in template constructs and I think that was something GCC took a little while to work out.
// But regardless some versions of gcc generate a warning when they shouldn't from the following code so that should be
// suppressed
#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wnarrowing"
#endif
// check for constructibility from a specific type and copy assignable used in the parse detection
template <typename T, typename C> class is_direct_constructible {
template <typename TT, typename CC>
static auto test(int, std::true_type) -> decltype(
// NVCC warns about narrowing conversions here
#ifdef __CUDACC__
#ifdef __NVCC_DIAG_PRAGMA_SUPPORT__
#pragma nv_diag_suppress 2361
#else
#pragma diag_suppress 2361
#endif
#endif
TT{std::declval<CC>()}
#ifdef __CUDACC__
#ifdef __NVCC_DIAG_PRAGMA_SUPPORT__
#pragma nv_diag_default 2361
#else
#pragma diag_default 2361
#endif
#endif
,
std::is_move_assignable<TT>());
template <typename TT, typename CC> static auto test(int, std::false_type) -> std::false_type;
template <typename, typename> static auto test(...) -> std::false_type;
public:
static constexpr bool value = decltype(test<T, C>(0, typename std::is_constructible<T, C>::type()))::value;
};
#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif
// Check for output streamability
// Based on https://stackoverflow.com/questions/22758291/how-can-i-detect-if-a-type-can-be-streamed-to-an-stdostream
template <typename T, typename S = std::ostringstream> class is_ostreamable {
template <typename TT, typename SS>
static auto test(int) -> decltype(std::declval<SS &>() << std::declval<TT>(), std::true_type());
template <typename, typename> static auto test(...) -> std::false_type;
public:
static constexpr bool value = decltype(test<T, S>(0))::value;
};
/// Check for input streamability
template <typename T, typename S = std::istringstream> class is_istreamable {
template <typename TT, typename SS>
static auto test(int) -> decltype(std::declval<SS &>() >> std::declval<TT &>(), std::true_type());
template <typename, typename> static auto test(...) -> std::false_type;
public:
static constexpr bool value = decltype(test<T, S>(0))::value;
};
/// Check for complex
template <typename T> class is_complex {
template <typename TT>
static auto test(int) -> decltype(std::declval<TT>().real(), std::declval<TT>().imag(), std::true_type());
template <typename> static auto test(...) -> std::false_type;
public:
static constexpr bool value = decltype(test<T>(0))::value;
};
/// Templated operation to get a value from a stream
template <typename T, enable_if_t<is_istreamable<T>::value, detail::enabler> = detail::dummy>
bool from_stream(const std::string &istring, T &obj) {
std::istringstream is;
is.str(istring);
is >> obj;
return !is.fail() && !is.rdbuf()->in_avail();
}
template <typename T, enable_if_t<!is_istreamable<T>::value, detail::enabler> = detail::dummy>
bool from_stream(const std::string & /*istring*/, T & /*obj*/) {
return false;
}
// check to see if an object is a mutable container (fail by default)
template <typename T, typename _ = void> struct is_mutable_container : std::false_type {};
/// type trait to test if a type is a mutable container meaning it has a value_type, it has an iterator, a clear, and
/// end methods and an insert function. And for our purposes we exclude std::string and types that can be constructed
/// from a std::string
template <typename T>
struct is_mutable_container<
T,
conditional_t<false,
void_t<typename T::value_type,
decltype(std::declval<T>().end()),
decltype(std::declval<T>().clear()),
decltype(std::declval<T>().insert(std::declval<decltype(std::declval<T>().end())>(),
std::declval<const typename T::value_type &>()))>,
void>> : public conditional_t<std::is_constructible<T, std::string>::value ||
std::is_constructible<T, std::wstring>::value,
std::false_type,
std::true_type> {};
// check to see if an object is a mutable container (fail by default)
template <typename T, typename _ = void> struct is_readable_container : std::false_type {};
/// type trait to test if a type is a container meaning it has a value_type, it has an iterator, a clear, and an end
/// methods and an insert function. And for our purposes we exclude std::string and types that can be constructed from
/// a std::string
template <typename T>
struct is_readable_container<
T,
conditional_t<false, void_t<decltype(std::declval<T>().end()), decltype(std::declval<T>().begin())>, void>>
: public std::true_type {};
// check to see if an object is a wrapper (fail by default)
template <typename T, typename _ = void> struct is_wrapper : std::false_type {};
// check if an object is a wrapper (it has a value_type defined)
template <typename T>
struct is_wrapper<T, conditional_t<false, void_t<typename T::value_type>, void>> : public std::true_type {};
// Check for tuple like types, as in classes with a tuple_size type trait
template <typename S> class is_tuple_like {
template <typename SS>
// static auto test(int)
// -> decltype(std::conditional<(std::tuple_size<SS>::value > 0), std::true_type, std::false_type>::type());
static auto test(int) -> decltype(std::tuple_size<typename std::decay<SS>::type>::value, std::true_type{});
template <typename> static auto test(...) -> std::false_type;
public:
static constexpr bool value = decltype(test<S>(0))::value;
};
/// Convert an object to a string (directly forward if this can become a string)
template <typename T, enable_if_t<std::is_convertible<T, std::string>::value, detail::enabler> = detail::dummy>
auto to_string(T &&value) -> decltype(std::forward<T>(value)) {
return std::forward<T>(value);
}
/// Construct a string from the object
template <typename T,
enable_if_t<std::is_constructible<std::string, T>::value && !std::is_convertible<T, std::string>::value,
detail::enabler> = detail::dummy>
std::string to_string(const T &value) {
return std::string(value); // NOLINT(google-readability-casting)
}
/// Convert an object to a string (streaming must be supported for that type)
template <typename T,
enable_if_t<!std::is_convertible<std::string, T>::value && !std::is_constructible<std::string, T>::value &&
is_ostreamable<T>::value,
detail::enabler> = detail::dummy>
std::string to_string(T &&value) {
std::stringstream stream;
stream << value;
return stream.str();
}
/// If conversion is not supported, return an empty string (streaming is not supported for that type)
template <typename T,
enable_if_t<!std::is_constructible<std::string, T>::value && !is_ostreamable<T>::value &&
!is_readable_container<typename std::remove_const<T>::type>::value,
detail::enabler> = detail::dummy>
std::string to_string(T &&) {
return {};
}
/// convert a readable container to a string
template <typename T,
enable_if_t<!std::is_constructible<std::string, T>::value && !is_ostreamable<T>::value &&
is_readable_container<T>::value,
detail::enabler> = detail::dummy>
std::string to_string(T &&variable) {
auto cval = variable.begin();
auto end = variable.end();
if(cval == end) {
return {"{}"};
}
std::vector<std::string> defaults;
while(cval != end) {
defaults.emplace_back(CLI::detail::to_string(*cval));
++cval;
}
return {"[" + detail::join(defaults) + "]"};
}
/// special template overload
template <typename T1,
typename T2,
typename T,
enable_if_t<std::is_same<T1, T2>::value, detail::enabler> = detail::dummy>
auto checked_to_string(T &&value) -> decltype(to_string(std::forward<T>(value))) {
return to_string(std::forward<T>(value));
}
/// special template overload
template <typename T1,
typename T2,
typename T,
enable_if_t<!std::is_same<T1, T2>::value, detail::enabler> = detail::dummy>
std::string checked_to_string(T &&) {
return std::string{};
}
/// get a string as a convertible value for arithmetic types
template <typename T, enable_if_t<std::is_arithmetic<T>::value, detail::enabler> = detail::dummy>
std::string value_string(const T &value) {
return std::to_string(value);
}
/// get a string as a convertible value for enumerations
template <typename T, enable_if_t<std::is_enum<T>::value, detail::enabler> = detail::dummy>
std::string value_string(const T &value) {
return std::to_string(static_cast<typename std::underlying_type<T>::type>(value));
}
/// for other types just use the regular to_string function
template <typename T,
enable_if_t<!std::is_enum<T>::value && !std::is_arithmetic<T>::value, detail::enabler> = detail::dummy>
auto value_string(const T &value) -> decltype(to_string(value)) {
return to_string(value);
}
/// template to get the underlying value type if it exists or use a default
template <typename T, typename def, typename Enable = void> struct wrapped_type {
using type = def;
};
/// Type size for regular object types that do not look like a tuple
template <typename T, typename def> struct wrapped_type<T, def, typename std::enable_if<is_wrapper<T>::value>::type> {
using type = typename T::value_type;
};
/// This will only trigger for actual void type
template <typename T, typename Enable = void> struct type_count_base {
static const int value{0};
};
/// Type size for regular object types that do not look like a tuple
template <typename T>
struct type_count_base<T,
typename std::enable_if<!is_tuple_like<T>::value && !is_mutable_container<T>::value &&
!std::is_void<T>::value>::type> {
static constexpr int value{1};
};
/// the base tuple size
template <typename T>
struct type_count_base<T, typename std::enable_if<is_tuple_like<T>::value && !is_mutable_container<T>::value>::type> {
static constexpr int value{std::tuple_size<T>::value};
};
/// Type count base for containers is the type_count_base of the individual element
template <typename T> struct type_count_base<T, typename std::enable_if<is_mutable_container<T>::value>::type> {
static constexpr int value{type_count_base<typename T::value_type>::value};
};
/// Set of overloads to get the type size of an object
/// forward declare the subtype_count structure
template <typename T> struct subtype_count;
/// forward declare the subtype_count_min structure
template <typename T> struct subtype_count_min;
/// This will only trigger for actual void type
template <typename T, typename Enable = void> struct type_count {
static const int value{0};
};
/// Type size for regular object types that do not look like a tuple
template <typename T>
struct type_count<T,
typename std::enable_if<!is_wrapper<T>::value && !is_tuple_like<T>::value && !is_complex<T>::value &&
!std::is_void<T>::value>::type> {
static constexpr int value{1};
};
/// Type size for complex since it sometimes looks like a wrapper
template <typename T> struct type_count<T, typename std::enable_if<is_complex<T>::value>::type> {
static constexpr int value{2};
};
/// Type size of types that are wrappers,except complex and tuples(which can also be wrappers sometimes)
template <typename T> struct type_count<T, typename std::enable_if<is_mutable_container<T>::value>::type> {
static constexpr int value{subtype_count<typename T::value_type>::value};
};
/// Type size of types that are wrappers,except containers complex and tuples(which can also be wrappers sometimes)
template <typename T>
struct type_count<T,
typename std::enable_if<is_wrapper<T>::value && !is_complex<T>::value && !is_tuple_like<T>::value &&
!is_mutable_container<T>::value>::type> {
static constexpr int value{type_count<typename T::value_type>::value};
};
/// 0 if the index > tuple size
template <typename T, std::size_t I>
constexpr typename std::enable_if<I == type_count_base<T>::value, int>::type tuple_type_size() {
return 0;
}
/// Recursively generate the tuple type name
template <typename T, std::size_t I>
constexpr typename std::enable_if < I<type_count_base<T>::value, int>::type tuple_type_size() {
return subtype_count<typename std::tuple_element<I, T>::type>::value + tuple_type_size<T, I + 1>();
}
/// Get the type size of the sum of type sizes for all the individual tuple types
template <typename T> struct type_count<T, typename std::enable_if<is_tuple_like<T>::value>::type> {
static constexpr int value{tuple_type_size<T, 0>()};
};
/// definition of subtype count
template <typename T> struct subtype_count {
static constexpr int value{is_mutable_container<T>::value ? expected_max_vector_size : type_count<T>::value};
};
/// This will only trigger for actual void type
template <typename T, typename Enable = void> struct type_count_min {
static const int value{0};
};
/// Type size for regular object types that do not look like a tuple
template <typename T>
struct type_count_min<
T,
typename std::enable_if<!is_mutable_container<T>::value && !is_tuple_like<T>::value && !is_wrapper<T>::value &&
!is_complex<T>::value && !std::is_void<T>::value>::type> {
static constexpr int value{type_count<T>::value};
};
/// Type size for complex since it sometimes looks like a wrapper
template <typename T> struct type_count_min<T, typename std::enable_if<is_complex<T>::value>::type> {
static constexpr int value{1};
};
/// Type size min of types that are wrappers,except complex and tuples(which can also be wrappers sometimes)
template <typename T>
struct type_count_min<
T,
typename std::enable_if<is_wrapper<T>::value && !is_complex<T>::value && !is_tuple_like<T>::value>::type> {
static constexpr int value{subtype_count_min<typename T::value_type>::value};
};
/// 0 if the index > tuple size
template <typename T, std::size_t I>
constexpr typename std::enable_if<I == type_count_base<T>::value, int>::type tuple_type_size_min() {
return 0;
}
/// Recursively generate the tuple type name
template <typename T, std::size_t I>
constexpr typename std::enable_if < I<type_count_base<T>::value, int>::type tuple_type_size_min() {
return subtype_count_min<typename std::tuple_element<I, T>::type>::value + tuple_type_size_min<T, I + 1>();
}
/// Get the type size of the sum of type sizes for all the individual tuple types
template <typename T> struct type_count_min<T, typename std::enable_if<is_tuple_like<T>::value>::type> {
static constexpr int value{tuple_type_size_min<T, 0>()};
};
/// definition of subtype count
template <typename T> struct subtype_count_min {
static constexpr int value{is_mutable_container<T>::value
? ((type_count<T>::value < expected_max_vector_size) ? type_count<T>::value : 0)
: type_count_min<T>::value};
};
/// This will only trigger for actual void type
template <typename T, typename Enable = void> struct expected_count {
static const int value{0};
};
/// For most types the number of expected items is 1
template <typename T>
struct expected_count<T,
typename std::enable_if<!is_mutable_container<T>::value && !is_wrapper<T>::value &&
!std::is_void<T>::value>::type> {
static constexpr int value{1};
};
/// number of expected items in a vector
template <typename T> struct expected_count<T, typename std::enable_if<is_mutable_container<T>::value>::type> {
static constexpr int value{expected_max_vector_size};
};
/// number of expected items in a vector
template <typename T>
struct expected_count<T, typename std::enable_if<!is_mutable_container<T>::value && is_wrapper<T>::value>::type> {
static constexpr int value{expected_count<typename T::value_type>::value};
};
// Enumeration of the different supported categorizations of objects
enum class object_category : int {
char_value = 1,
integral_value = 2,
unsigned_integral = 4,
enumeration = 6,
boolean_value = 8,
floating_point = 10,
number_constructible = 12,
double_constructible = 14,
integer_constructible = 16,
// string like types
string_assignable = 23,
string_constructible = 24,
wstring_assignable = 25,
wstring_constructible = 26,
other = 45,
// special wrapper or container types
wrapper_value = 50,
complex_number = 60,
tuple_value = 70,
container_value = 80,
};
/// Set of overloads to classify an object according to type
/// some type that is not otherwise recognized
template <typename T, typename Enable = void> struct classify_object {
static constexpr object_category value{object_category::other};
};
/// Signed integers
template <typename T>
struct classify_object<
T,
typename std::enable_if<std::is_integral<T>::value && !std::is_same<T, char>::value && std::is_signed<T>::value &&
!is_bool<T>::value && !std::is_enum<T>::value>::type> {
static constexpr object_category value{object_category::integral_value};
};
/// Unsigned integers
template <typename T>
struct classify_object<T,
typename std::enable_if<std::is_integral<T>::value && std::is_unsigned<T>::value &&
!std::is_same<T, char>::value && !is_bool<T>::value>::type> {
static constexpr object_category value{object_category::unsigned_integral};
};
/// single character values
template <typename T>
struct classify_object<T, typename std::enable_if<std::is_same<T, char>::value && !std::is_enum<T>::value>::type> {
static constexpr object_category value{object_category::char_value};
};
/// Boolean values
template <typename T> struct classify_object<T, typename std::enable_if<is_bool<T>::value>::type> {
static constexpr object_category value{object_category::boolean_value};
};
/// Floats
template <typename T> struct classify_object<T, typename std::enable_if<std::is_floating_point<T>::value>::type> {
static constexpr object_category value{object_category::floating_point};
};
#if defined _MSC_VER
// in MSVC wstring should take precedence if available this isn't as useful on other compilers due to the broader use of
// utf-8 encoding
#define WIDE_STRING_CHECK \
!std::is_assignable<T &, std::wstring>::value && !std::is_constructible<T, std::wstring>::value
#define STRING_CHECK true
#else
#define WIDE_STRING_CHECK true
#define STRING_CHECK !std::is_assignable<T &, std::string>::value && !std::is_constructible<T, std::string>::value
#endif
/// String and similar direct assignment
template <typename T>
struct classify_object<
T,
typename std::enable_if<!std::is_floating_point<T>::value && !std::is_integral<T>::value && WIDE_STRING_CHECK &&
std::is_assignable<T &, std::string>::value>::type> {
static constexpr object_category value{object_category::string_assignable};
};
/// String and similar constructible and copy assignment
template <typename T>
struct classify_object<
T,
typename std::enable_if<!std::is_floating_point<T>::value && !std::is_integral<T>::value &&
!std::is_assignable<T &, std::string>::value && (type_count<T>::value == 1) &&
WIDE_STRING_CHECK && std::is_constructible<T, std::string>::value>::type> {
static constexpr object_category value{object_category::string_constructible};
};
/// Wide strings
template <typename T>
struct classify_object<T,
typename std::enable_if<!std::is_floating_point<T>::value && !std::is_integral<T>::value &&
STRING_CHECK && std::is_assignable<T &, std::wstring>::value>::type> {
static constexpr object_category value{object_category::wstring_assignable};
};
template <typename T>
struct classify_object<
T,
typename std::enable_if<!std::is_floating_point<T>::value && !std::is_integral<T>::value &&
!std::is_assignable<T &, std::wstring>::value && (type_count<T>::value == 1) &&
STRING_CHECK && std::is_constructible<T, std::wstring>::value>::type> {
static constexpr object_category value{object_category::wstring_constructible};
};
/// Enumerations
template <typename T> struct classify_object<T, typename std::enable_if<std::is_enum<T>::value>::type> {
static constexpr object_category value{object_category::enumeration};
};
template <typename T> struct classify_object<T, typename std::enable_if<is_complex<T>::value>::type> {
static constexpr object_category value{object_category::complex_number};
};
/// Handy helper to contain a bunch of checks that rule out many common types (integers, string like, floating point,
/// vectors, and enumerations
template <typename T> struct uncommon_type {
using type = typename std::conditional<
!std::is_floating_point<T>::value && !std::is_integral<T>::value &&
!std::is_assignable<T &, std::string>::value && !std::is_constructible<T, std::string>::value &&
!std::is_assignable<T &, std::wstring>::value && !std::is_constructible<T, std::wstring>::value &&
!is_complex<T>::value && !is_mutable_container<T>::value && !std::is_enum<T>::value,
std::true_type,
std::false_type>::type;
static constexpr bool value = type::value;
};
/// wrapper type
template <typename T>
struct classify_object<T,
typename std::enable_if<(!is_mutable_container<T>::value && is_wrapper<T>::value &&
!is_tuple_like<T>::value && uncommon_type<T>::value)>::type> {
static constexpr object_category value{object_category::wrapper_value};
};
/// Assignable from double or int
template <typename T>
struct classify_object<T,
typename std::enable_if<uncommon_type<T>::value && type_count<T>::value == 1 &&
!is_wrapper<T>::value && is_direct_constructible<T, double>::value &&
is_direct_constructible<T, int>::value>::type> {
static constexpr object_category value{object_category::number_constructible};
};
/// Assignable from int
template <typename T>
struct classify_object<T,
typename std::enable_if<uncommon_type<T>::value && type_count<T>::value == 1 &&
!is_wrapper<T>::value && !is_direct_constructible<T, double>::value &&
is_direct_constructible<T, int>::value>::type> {
static constexpr object_category value{object_category::integer_constructible};
};
/// Assignable from double
template <typename T>
struct classify_object<T,
typename std::enable_if<uncommon_type<T>::value && type_count<T>::value == 1 &&
!is_wrapper<T>::value && is_direct_constructible<T, double>::value &&
!is_direct_constructible<T, int>::value>::type> {
static constexpr object_category value{object_category::double_constructible};
};
/// Tuple type
template <typename T>
struct classify_object<
T,
typename std::enable_if<is_tuple_like<T>::value &&
((type_count<T>::value >= 2 && !is_wrapper<T>::value) ||
(uncommon_type<T>::value && !is_direct_constructible<T, double>::value &&
!is_direct_constructible<T, int>::value) ||
(uncommon_type<T>::value && type_count<T>::value >= 2))>::type> {
static constexpr object_category value{object_category::tuple_value};
// the condition on this class requires it be like a tuple, but on some compilers (like Xcode) tuples can be
// constructed from just the first element so tuples of <string, int,int> can be constructed from a string, which
// could lead to issues so there are two variants of the condition, the first isolates things with a type size >=2
// mainly to get tuples on Xcode with the exception of wrappers, the second is the main one and just separating out
// those cases that are caught by other object classifications
};
/// container type
template <typename T> struct classify_object<T, typename std::enable_if<is_mutable_container<T>::value>::type> {
static constexpr object_category value{object_category::container_value};
};
// Type name print
/// Was going to be based on
/// http://stackoverflow.com/questions/1055452/c-get-name-of-type-in-template
/// But this is cleaner and works better in this case
template <typename T,
enable_if_t<classify_object<T>::value == object_category::char_value, detail::enabler> = detail::dummy>
constexpr const char *type_name() {
return "CHAR";
}
template <typename T,
enable_if_t<classify_object<T>::value == object_category::integral_value ||
classify_object<T>::value == object_category::integer_constructible,
detail::enabler> = detail::dummy>
constexpr const char *type_name() {
return "INT";
}
template <typename T,
enable_if_t<classify_object<T>::value == object_category::unsigned_integral, detail::enabler> = detail::dummy>
constexpr const char *type_name() {
return "UINT";
}
template <typename T,
enable_if_t<classify_object<T>::value == object_category::floating_point ||
classify_object<T>::value == object_category::number_constructible ||
classify_object<T>::value == object_category::double_constructible,
detail::enabler> = detail::dummy>
constexpr const char *type_name() {
return "FLOAT";
}
/// Print name for enumeration types
template <typename T,
enable_if_t<classify_object<T>::value == object_category::enumeration, detail::enabler> = detail::dummy>
constexpr const char *type_name() {
return "ENUM";
}
/// Print name for enumeration types
template <typename T,
enable_if_t<classify_object<T>::value == object_category::boolean_value, detail::enabler> = detail::dummy>
constexpr const char *type_name() {
return "BOOLEAN";
}
/// Print name for enumeration types
template <typename T,
enable_if_t<classify_object<T>::value == object_category::complex_number, detail::enabler> = detail::dummy>
constexpr const char *type_name() {
return "COMPLEX";
}
/// Print for all other types
template <typename T,
enable_if_t<classify_object<T>::value >= object_category::string_assignable &&
classify_object<T>::value <= object_category::other,
detail::enabler> = detail::dummy>
constexpr const char *type_name() {
return "TEXT";
}
/// typename for tuple value
template <typename T,
enable_if_t<classify_object<T>::value == object_category::tuple_value && type_count_base<T>::value >= 2,
detail::enabler> = detail::dummy>
std::string type_name(); // forward declaration
/// Generate type name for a wrapper or container value
template <typename T,
enable_if_t<classify_object<T>::value == object_category::container_value ||
classify_object<T>::value == object_category::wrapper_value,
detail::enabler> = detail::dummy>
std::string type_name(); // forward declaration
/// Print name for single element tuple types
template <typename T,
enable_if_t<classify_object<T>::value == object_category::tuple_value && type_count_base<T>::value == 1,
detail::enabler> = detail::dummy>
inline std::string type_name() {
return type_name<typename std::decay<typename std::tuple_element<0, T>::type>::type>();
}
/// Empty string if the index > tuple size
template <typename T, std::size_t I>
inline typename std::enable_if<I == type_count_base<T>::value, std::string>::type tuple_name() {
return std::string{};
}
/// Recursively generate the tuple type name
template <typename T, std::size_t I>
inline typename std::enable_if<(I < type_count_base<T>::value), std::string>::type tuple_name() {
auto str = std::string{type_name<typename std::decay<typename std::tuple_element<I, T>::type>::type>()} + ',' +
tuple_name<T, I + 1>();
if(str.back() == ',')
str.pop_back();
return str;
}
/// Print type name for tuples with 2 or more elements
template <typename T,
enable_if_t<classify_object<T>::value == object_category::tuple_value && type_count_base<T>::value >= 2,
detail::enabler>>
inline std::string type_name() {
auto tname = std::string(1, '[') + tuple_name<T, 0>();
tname.push_back(']');
return tname;
}
/// get the type name for a type that has a value_type member
template <typename T,
enable_if_t<classify_object<T>::value == object_category::container_value ||
classify_object<T>::value == object_category::wrapper_value,
detail::enabler>>
inline std::string type_name() {
return type_name<typename T::value_type>();
}
// Lexical cast
/// Convert to an unsigned integral
template <typename T, enable_if_t<std::is_unsigned<T>::value, detail::enabler> = detail::dummy>
bool integral_conversion(const std::string &input, T &output) noexcept {
if(input.empty() || input.front() == '-') {
return false;
}
char *val{nullptr};
errno = 0;
std::uint64_t output_ll = std::strtoull(input.c_str(), &val, 0);
if(errno == ERANGE) {
return false;
}
output = static_cast<T>(output_ll);
if(val == (input.c_str() + input.size()) && static_cast<std::uint64_t>(output) == output_ll) {
return true;
}
val = nullptr;
std::int64_t output_sll = std::strtoll(input.c_str(), &val, 0);
if(val == (input.c_str() + input.size())) {
output = (output_sll < 0) ? static_cast<T>(0) : static_cast<T>(output_sll);
return (static_cast<std::int64_t>(output) == output_sll);
}
// remove separators
if(input.find_first_of("_'") != std::string::npos) {
std::string nstring = input;
nstring.erase(std::remove(nstring.begin(), nstring.end(), '_'), nstring.end());
nstring.erase(std::remove(nstring.begin(), nstring.end(), '\''), nstring.end());
return integral_conversion(nstring, output);
}
if(input.compare(0, 2, "0o") == 0) {
val = nullptr;
errno = 0;
output_ll = std::strtoull(input.c_str() + 2, &val, 8);
if(errno == ERANGE) {
return false;
}
output = static_cast<T>(output_ll);
return (val == (input.c_str() + input.size()) && static_cast<std::uint64_t>(output) == output_ll);
}
if(input.compare(0, 2, "0b") == 0) {
val = nullptr;
errno = 0;
output_ll = std::strtoull(input.c_str() + 2, &val, 2);
if(errno == ERANGE) {
return false;
}
output = static_cast<T>(output_ll);
return (val == (input.c_str() + input.size()) && static_cast<std::uint64_t>(output) == output_ll);
}
return false;
}
/// Convert to a signed integral
template <typename T, enable_if_t<std::is_signed<T>::value, detail::enabler> = detail::dummy>
bool integral_conversion(const std::string &input, T &output) noexcept {
if(input.empty()) {
return false;
}
char *val = nullptr;
errno = 0;
std::int64_t output_ll = std::strtoll(input.c_str(), &val, 0);
if(errno == ERANGE) {
return false;
}
output = static_cast<T>(output_ll);
if(val == (input.c_str() + input.size()) && static_cast<std::int64_t>(output) == output_ll) {
return true;
}
if(input == "true") {
// this is to deal with a few oddities with flags and wrapper int types
output = static_cast<T>(1);
return true;
}
// remove separators
if(input.find_first_of("_'") != std::string::npos) {
std::string nstring = input;
nstring.erase(std::remove(nstring.begin(), nstring.end(), '_'), nstring.end());
nstring.erase(std::remove(nstring.begin(), nstring.end(), '\''), nstring.end());
return integral_conversion(nstring, output);
}
if(input.compare(0, 2, "0o") == 0) {
val = nullptr;
errno = 0;
output_ll = std::strtoll(input.c_str() + 2, &val, 8);
if(errno == ERANGE) {
return false;
}
output = static_cast<T>(output_ll);
return (val == (input.c_str() + input.size()) && static_cast<std::int64_t>(output) == output_ll);
}
if(input.compare(0, 2, "0b") == 0) {
val = nullptr;
errno = 0;
output_ll = std::strtoll(input.c_str() + 2, &val, 2);
if(errno == ERANGE) {
return false;
}
output = static_cast<T>(output_ll);
return (val == (input.c_str() + input.size()) && static_cast<std::int64_t>(output) == output_ll);
}
return false;
}
/// Convert a flag into an integer value typically binary flags sets errno to nonzero if conversion failed
inline std::int64_t to_flag_value(std::string val) noexcept {
static const std::string trueString("true");
static const std::string falseString("false");
if(val == trueString) {
return 1;
}
if(val == falseString) {
return -1;
}
val = detail::to_lower(val);
std::int64_t ret = 0;
if(val.size() == 1) {
if(val[0] >= '1' && val[0] <= '9') {
return (static_cast<std::int64_t>(val[0]) - '0');
}
switch(val[0]) {
case '0':
case 'f':
case 'n':
case '-':
ret = -1;
break;
case 't':
case 'y':
case '+':
ret = 1;
break;
default:
errno = EINVAL;
return -1;
}
return ret;
}
if(val == trueString || val == "on" || val == "yes" || val == "enable") {
ret = 1;
} else if(val == falseString || val == "off" || val == "no" || val == "disable") {
ret = -1;
} else {
char *loc_ptr{nullptr};
ret = std::strtoll(val.c_str(), &loc_ptr, 0);
if(loc_ptr != (val.c_str() + val.size()) && errno == 0) {
errno = EINVAL;
}
}
return ret;
}
/// Integer conversion
template <typename T,
enable_if_t<classify_object<T>::value == object_category::integral_value ||
classify_object<T>::value == object_category::unsigned_integral,
detail::enabler> = detail::dummy>
bool lexical_cast(const std::string &input, T &output) {
return integral_conversion(input, output);
}
/// char values
template <typename T,
enable_if_t<classify_object<T>::value == object_category::char_value, detail::enabler> = detail::dummy>
bool lexical_cast(const std::string &input, T &output) {
if(input.size() == 1) {
output = static_cast<T>(input[0]);
return true;
}
return integral_conversion(input, output);
}
/// Boolean values
template <typename T,
enable_if_t<classify_object<T>::value == object_category::boolean_value, detail::enabler> = detail::dummy>
bool lexical_cast(const std::string &input, T &output) {
errno = 0;
auto out = to_flag_value(input);
if(errno == 0) {
output = (out > 0);
} else if(errno == ERANGE) {
output = (input[0] != '-');
} else {
return false;
}
return true;
}
/// Floats
template <typename T,
enable_if_t<classify_object<T>::value == object_category::floating_point, detail::enabler> = detail::dummy>
bool lexical_cast(const std::string &input, T &output) {
if(input.empty()) {
return false;
}
char *val = nullptr;
auto output_ld = std::strtold(input.c_str(), &val);
output = static_cast<T>(output_ld);
if(val == (input.c_str() + input.size())) {
return true;
}
// remove separators
if(input.find_first_of("_'") != std::string::npos) {
std::string nstring = input;
nstring.erase(std::remove(nstring.begin(), nstring.end(), '_'), nstring.end());
nstring.erase(std::remove(nstring.begin(), nstring.end(), '\''), nstring.end());
return lexical_cast(nstring, output);
}
return false;
}
/// complex
template <typename T,
enable_if_t<classify_object<T>::value == object_category::complex_number, detail::enabler> = detail::dummy>
bool lexical_cast(const std::string &input, T &output) {
using XC = typename wrapped_type<T, double>::type;
XC x{0.0}, y{0.0};
auto str1 = input;
bool worked = false;
auto nloc = str1.find_last_of("+-");
if(nloc != std::string::npos && nloc > 0) {
worked = lexical_cast(str1.substr(0, nloc), x);
str1 = str1.substr(nloc);
if(str1.back() == 'i' || str1.back() == 'j')
str1.pop_back();
worked = worked && lexical_cast(str1, y);
} else {
if(str1.back() == 'i' || str1.back() == 'j') {
str1.pop_back();
worked = lexical_cast(str1, y);
x = XC{0};
} else {
worked = lexical_cast(str1, x);
y = XC{0};
}
}
if(worked) {
output = T{x, y};
return worked;
}
return from_stream(input, output);
}
/// String and similar direct assignment
template <typename T,
enable_if_t<classify_object<T>::value == object_category::string_assignable, detail::enabler> = detail::dummy>
bool lexical_cast(const std::string &input, T &output) {
output = input;
return true;
}
/// String and similar constructible and copy assignment
template <
typename T,
enable_if_t<classify_object<T>::value == object_category::string_constructible, detail::enabler> = detail::dummy>
bool lexical_cast(const std::string &input, T &output) {
output = T(input);
return true;
}
/// Wide strings
template <
typename T,
enable_if_t<classify_object<T>::value == object_category::wstring_assignable, detail::enabler> = detail::dummy>
bool lexical_cast(const std::string &input, T &output) {
output = widen(input);
return true;
}
template <
typename T,
enable_if_t<classify_object<T>::value == object_category::wstring_constructible, detail::enabler> = detail::dummy>
bool lexical_cast(const std::string &input, T &output) {
output = T{widen(input)};
return true;
}
/// Enumerations
template <typename T,
enable_if_t<classify_object<T>::value == object_category::enumeration, detail::enabler> = detail::dummy>
bool lexical_cast(const std::string &input, T &output) {
typename std::underlying_type<T>::type val;
if(!integral_conversion(input, val)) {
return false;
}
output = static_cast<T>(val);
return true;
}
/// wrapper types
template <typename T,
enable_if_t<classify_object<T>::value == object_category::wrapper_value &&
std::is_assignable<T &, typename T::value_type>::value,
detail::enabler> = detail::dummy>
bool lexical_cast(const std::string &input, T &output) {
typename T::value_type val;
if(lexical_cast(input, val)) {
output = val;
return true;
}
return from_stream(input, output);
}
template <typename T,
enable_if_t<classify_object<T>::value == object_category::wrapper_value &&
!std::is_assignable<T &, typename T::value_type>::value && std::is_assignable<T &, T>::value,
detail::enabler> = detail::dummy>
bool lexical_cast(const std::string &input, T &output) {
typename T::value_type val;
if(lexical_cast(input, val)) {
output = T{val};
return true;
}
return from_stream(input, output);
}
/// Assignable from double or int
template <
typename T,
enable_if_t<classify_object<T>::value == object_category::number_constructible, detail::enabler> = detail::dummy>
bool lexical_cast(const std::string &input, T &output) {
int val = 0;
if(integral_conversion(input, val)) {
output = T(val);
return true;
}
double dval = 0.0;
if(lexical_cast(input, dval)) {
output = T{dval};
return true;
}
return from_stream(input, output);
}
/// Assignable from int
template <
typename T,
enable_if_t<classify_object<T>::value == object_category::integer_constructible, detail::enabler> = detail::dummy>
bool lexical_cast(const std::string &input, T &output) {
int val = 0;
if(integral_conversion(input, val)) {
output = T(val);
return true;
}
return from_stream(input, output);
}
/// Assignable from double
template <
typename T,
enable_if_t<classify_object<T>::value == object_category::double_constructible, detail::enabler> = detail::dummy>
bool lexical_cast(const std::string &input, T &output) {
double val = 0.0;
if(lexical_cast(input, val)) {
output = T{val};
return true;
}
return from_stream(input, output);
}
/// Non-string convertible from an int
template <typename T,
enable_if_t<classify_object<T>::value == object_category::other && std::is_assignable<T &, int>::value,
detail::enabler> = detail::dummy>
bool lexical_cast(const std::string &input, T &output) {
int val = 0;
if(integral_conversion(input, val)) {
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable : 4800)
#endif
// with Atomic<XX> this could produce a warning due to the conversion but if atomic gets here it is an old style
// so will most likely still work
output = val;
#ifdef _MSC_VER
#pragma warning(pop)
#endif
return true;
}
// LCOV_EXCL_START
// This version of cast is only used for odd cases in an older compilers the fail over
// from_stream is tested elsewhere an not relevant for coverage here
return from_stream(input, output);
// LCOV_EXCL_STOP
}
/// Non-string parsable by a stream
template <typename T,
enable_if_t<classify_object<T>::value == object_category::other && !std::is_assignable<T &, int>::value &&
is_istreamable<T>::value,
detail::enabler> = detail::dummy>
bool lexical_cast(const std::string &input, T &output) {
return from_stream(input, output);
}
/// Fallback overload that prints a human-readable error for types that we don't recognize and that don't have a
/// user-supplied lexical_cast overload.
template <typename T,
enable_if_t<classify_object<T>::value == object_category::other && !std::is_assignable<T &, int>::value &&
!is_istreamable<T>::value && !adl_detail::is_lexical_castable<T>::value,
detail::enabler> = detail::dummy>
bool lexical_cast(const std::string & /*input*/, T & /*output*/) {
static_assert(!std::is_same<T, T>::value, // Can't just write false here.
"option object type must have a lexical cast overload or streaming input operator(>>) defined, if it "
"is convertible from another type use the add_option<T, XC>(...) with XC being the known type");
return false;
}
/// Assign a value through lexical cast operations
/// Strings can be empty so we need to do a little different
template <typename AssignTo,
typename ConvertTo,
enable_if_t<std::is_same<AssignTo, ConvertTo>::value &&
(classify_object<AssignTo>::value == object_category::string_assignable ||
classify_object<AssignTo>::value == object_category::string_constructible ||
classify_object<AssignTo>::value == object_category::wstring_assignable ||
classify_object<AssignTo>::value == object_category::wstring_constructible),
detail::enabler> = detail::dummy>
bool lexical_assign(const std::string &input, AssignTo &output) {
return lexical_cast(input, output);
}
/// Assign a value through lexical cast operations
template <typename AssignTo,
typename ConvertTo,
enable_if_t<std::is_same<AssignTo, ConvertTo>::value && std::is_assignable<AssignTo &, AssignTo>::value &&
classify_object<AssignTo>::value != object_category::string_assignable &&
classify_object<AssignTo>::value != object_category::string_constructible &&
classify_object<AssignTo>::value != object_category::wstring_assignable &&
classify_object<AssignTo>::value != object_category::wstring_constructible,
detail::enabler> = detail::dummy>
bool lexical_assign(const std::string &input, AssignTo &output) {
if(input.empty()) {
output = AssignTo{};
return true;
}
return lexical_cast(input, output);
}
/// Assign a value through lexical cast operations
template <typename AssignTo,
typename ConvertTo,
enable_if_t<std::is_same<AssignTo, ConvertTo>::value && !std::is_assignable<AssignTo &, AssignTo>::value &&
classify_object<AssignTo>::value == object_category::wrapper_value,
detail::enabler> = detail::dummy>
bool lexical_assign(const std::string &input, AssignTo &output) {
if(input.empty()) {
typename AssignTo::value_type emptyVal{};
output = emptyVal;
return true;
}
return lexical_cast(input, output);
}
/// Assign a value through lexical cast operations for int compatible values
/// mainly for atomic operations on some compilers
template <typename AssignTo,
typename ConvertTo,
enable_if_t<std::is_same<AssignTo, ConvertTo>::value && !std::is_assignable<AssignTo &, AssignTo>::value &&
classify_object<AssignTo>::value != object_category::wrapper_value &&
std::is_assignable<AssignTo &, int>::value,
detail::enabler> = detail::dummy>
bool lexical_assign(const std::string &input, AssignTo &output) {
if(input.empty()) {
output = 0;
return true;
}
int val{0};
if(lexical_cast(input, val)) {
#if defined(__clang__)
/* on some older clang compilers */
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wsign-conversion"
#endif
output = val;
#if defined(__clang__)
#pragma clang diagnostic pop
#endif
return true;
}
return false;
}
/// Assign a value converted from a string in lexical cast to the output value directly
template <typename AssignTo,
typename ConvertTo,
enable_if_t<!std::is_same<AssignTo, ConvertTo>::value && std::is_assignable<AssignTo &, ConvertTo &>::value,
detail::enabler> = detail::dummy>
bool lexical_assign(const std::string &input, AssignTo &output) {
ConvertTo val{};
bool parse_result = (!input.empty()) ? lexical_cast(input, val) : true;
if(parse_result) {
output = val;
}
return parse_result;
}
/// Assign a value from a lexical cast through constructing a value and move assigning it
template <
typename AssignTo,
typename ConvertTo,
enable_if_t<!std::is_same<AssignTo, ConvertTo>::value && !std::is_assignable<AssignTo &, ConvertTo &>::value &&
std::is_move_assignable<AssignTo>::value,
detail::enabler> = detail::dummy>
bool lexical_assign(const std::string &input, AssignTo &output) {
ConvertTo val{};
bool parse_result = input.empty() ? true : lexical_cast(input, val);
if(parse_result) {
output = AssignTo(val); // use () form of constructor to allow some implicit conversions
}
return parse_result;
}
/// primary lexical conversion operation, 1 string to 1 type of some kind
template <typename AssignTo,
typename ConvertTo,
enable_if_t<classify_object<ConvertTo>::value <= object_category::other &&
classify_object<AssignTo>::value <= object_category::wrapper_value,
detail::enabler> = detail::dummy>
bool lexical_conversion(const std::vector<std ::string> &strings, AssignTo &output) {
return lexical_assign<AssignTo, ConvertTo>(strings[0], output);
}
/// Lexical conversion if there is only one element but the conversion type is for two, then call a two element
/// constructor
template <typename AssignTo,
typename ConvertTo,
enable_if_t<(type_count<AssignTo>::value <= 2) && expected_count<AssignTo>::value == 1 &&
is_tuple_like<ConvertTo>::value && type_count_base<ConvertTo>::value == 2,
detail::enabler> = detail::dummy>
bool lexical_conversion(const std::vector<std ::string> &strings, AssignTo &output) {
// the remove const is to handle pair types coming from a container
using FirstType = typename std::remove_const<typename std::tuple_element<0, ConvertTo>::type>::type;
using SecondType = typename std::tuple_element<1, ConvertTo>::type;
FirstType v1;
SecondType v2;
bool retval = lexical_assign<FirstType, FirstType>(strings[0], v1);
retval = retval && lexical_assign<SecondType, SecondType>((strings.size() > 1) ? strings[1] : std::string{}, v2);
if(retval) {
output = AssignTo{v1, v2};
}
return retval;
}
/// Lexical conversion of a container types of single elements
template <class AssignTo,
class ConvertTo,
enable_if_t<is_mutable_container<AssignTo>::value && is_mutable_container<ConvertTo>::value &&
type_count<ConvertTo>::value == 1,
detail::enabler> = detail::dummy>
bool lexical_conversion(const std::vector<std ::string> &strings, AssignTo &output) {
output.erase(output.begin(), output.end());
if(strings.empty()) {
return true;
}
if(strings.size() == 1 && strings[0] == "{}") {
return true;
}
bool skip_remaining = false;
if(strings.size() == 2 && strings[0] == "{}" && is_separator(strings[1])) {
skip_remaining = true;
}
for(const auto &elem : strings) {
typename AssignTo::value_type out;
bool retval = lexical_assign<typename AssignTo::value_type, typename ConvertTo::value_type>(elem, out);
if(!retval) {
return false;
}
output.insert(output.end(), std::move(out));
if(skip_remaining) {
break;
}
}
return (!output.empty());
}
/// Lexical conversion for complex types
template <class AssignTo, class ConvertTo, enable_if_t<is_complex<ConvertTo>::value, detail::enabler> = detail::dummy>
bool lexical_conversion(const std::vector<std::string> &strings, AssignTo &output) {
if(strings.size() >= 2 && !strings[1].empty()) {
using XC2 = typename wrapped_type<ConvertTo, double>::type;
XC2 x{0.0}, y{0.0};
auto str1 = strings[1];
if(str1.back() == 'i' || str1.back() == 'j') {
str1.pop_back();
}
auto worked = lexical_cast(strings[0], x) && lexical_cast(str1, y);
if(worked) {
output = ConvertTo{x, y};
}
return worked;
}
return lexical_assign<AssignTo, ConvertTo>(strings[0], output);
}
/// Conversion to a vector type using a particular single type as the conversion type
template <class AssignTo,
class ConvertTo,
enable_if_t<is_mutable_container<AssignTo>::value && (expected_count<ConvertTo>::value == 1) &&
(type_count<ConvertTo>::value == 1),
detail::enabler> = detail::dummy>
bool lexical_conversion(const std::vector<std ::string> &strings, AssignTo &output) {
bool retval = true;
output.clear();
output.reserve(strings.size());
for(const auto &elem : strings) {
output.emplace_back();
retval = retval && lexical_assign<typename AssignTo::value_type, ConvertTo>(elem, output.back());
}
return (!output.empty()) && retval;
}
// forward declaration
/// Lexical conversion of a container types with conversion type of two elements
template <class AssignTo,
class ConvertTo,
enable_if_t<is_mutable_container<AssignTo>::value && is_mutable_container<ConvertTo>::value &&
type_count_base<ConvertTo>::value == 2,
detail::enabler> = detail::dummy>
bool lexical_conversion(std::vector<std::string> strings, AssignTo &output);
/// Lexical conversion of a vector types with type_size >2 forward declaration
template <class AssignTo,
class ConvertTo,
enable_if_t<is_mutable_container<AssignTo>::value && is_mutable_container<ConvertTo>::value &&
type_count_base<ConvertTo>::value != 2 &&
((type_count<ConvertTo>::value > 2) ||
(type_count<ConvertTo>::value > type_count_base<ConvertTo>::value)),
detail::enabler> = detail::dummy>
bool lexical_conversion(const std::vector<std::string> &strings, AssignTo &output);
/// Conversion for tuples
template <class AssignTo,
class ConvertTo,
enable_if_t<is_tuple_like<AssignTo>::value && is_tuple_like<ConvertTo>::value &&
(type_count_base<ConvertTo>::value != type_count<ConvertTo>::value ||
type_count<ConvertTo>::value > 2),
detail::enabler> = detail::dummy>
bool lexical_conversion(const std::vector<std::string> &strings, AssignTo &output); // forward declaration
/// Conversion for operations where the assigned type is some class but the conversion is a mutable container or large
/// tuple
template <typename AssignTo,
typename ConvertTo,
enable_if_t<!is_tuple_like<AssignTo>::value && !is_mutable_container<AssignTo>::value &&
classify_object<ConvertTo>::value != object_category::wrapper_value &&
(is_mutable_container<ConvertTo>::value || type_count<ConvertTo>::value > 2),
detail::enabler> = detail::dummy>
bool lexical_conversion(const std::vector<std ::string> &strings, AssignTo &output) {
if(strings.size() > 1 || (!strings.empty() && !(strings.front().empty()))) {
ConvertTo val;
auto retval = lexical_conversion<ConvertTo, ConvertTo>(strings, val);
output = AssignTo{val};
return retval;
}
output = AssignTo{};
return true;
}
/// function template for converting tuples if the static Index is greater than the tuple size
template <class AssignTo, class ConvertTo, std::size_t I>
inline typename std::enable_if<(I >= type_count_base<AssignTo>::value), bool>::type
tuple_conversion(const std::vector<std::string> &, AssignTo &) {
return true;
}
/// Conversion of a tuple element where the type size ==1 and not a mutable container
template <class AssignTo, class ConvertTo>
inline typename std::enable_if<!is_mutable_container<ConvertTo>::value && type_count<ConvertTo>::value == 1, bool>::type
tuple_type_conversion(std::vector<std::string> &strings, AssignTo &output) {
auto retval = lexical_assign<AssignTo, ConvertTo>(strings[0], output);
strings.erase(strings.begin());
return retval;
}
/// Conversion of a tuple element where the type size !=1 but the size is fixed and not a mutable container
template <class AssignTo, class ConvertTo>
inline typename std::enable_if<!is_mutable_container<ConvertTo>::value && (type_count<ConvertTo>::value > 1) &&
type_count<ConvertTo>::value == type_count_min<ConvertTo>::value,
bool>::type
tuple_type_conversion(std::vector<std::string> &strings, AssignTo &output) {
auto retval = lexical_conversion<AssignTo, ConvertTo>(strings, output);
strings.erase(strings.begin(), strings.begin() + type_count<ConvertTo>::value);
return retval;
}
/// Conversion of a tuple element where the type is a mutable container or a type with different min and max type sizes
template <class AssignTo, class ConvertTo>
inline typename std::enable_if<is_mutable_container<ConvertTo>::value ||
type_count<ConvertTo>::value != type_count_min<ConvertTo>::value,
bool>::type
tuple_type_conversion(std::vector<std::string> &strings, AssignTo &output) {
std::size_t index{subtype_count_min<ConvertTo>::value};
const std::size_t mx_count{subtype_count<ConvertTo>::value};
const std::size_t mx{(std::min)(mx_count, strings.size() - 1)};
while(index < mx) {
if(is_separator(strings[index])) {
break;
}
++index;
}
bool retval = lexical_conversion<AssignTo, ConvertTo>(
std::vector<std::string>(strings.begin(), strings.begin() + static_cast<std::ptrdiff_t>(index)), output);
if(strings.size() > index) {
strings.erase(strings.begin(), strings.begin() + static_cast<std::ptrdiff_t>(index) + 1);
} else {
strings.clear();
}
return retval;
}
/// Tuple conversion operation
template <class AssignTo, class ConvertTo, std::size_t I>
inline typename std::enable_if<(I < type_count_base<AssignTo>::value), bool>::type
tuple_conversion(std::vector<std::string> strings, AssignTo &output) {
bool retval = true;
using ConvertToElement = typename std::
conditional<is_tuple_like<ConvertTo>::value, typename std::tuple_element<I, ConvertTo>::type, ConvertTo>::type;
if(!strings.empty()) {
retval = retval && tuple_type_conversion<typename std::tuple_element<I, AssignTo>::type, ConvertToElement>(
strings, std::get<I>(output));
}
retval = retval && tuple_conversion<AssignTo, ConvertTo, I + 1>(std::move(strings), output);
return retval;
}
/// Lexical conversion of a container types with tuple elements of size 2
template <class AssignTo,
class ConvertTo,
enable_if_t<is_mutable_container<AssignTo>::value && is_mutable_container<ConvertTo>::value &&
type_count_base<ConvertTo>::value == 2,
detail::enabler>>
bool lexical_conversion(std::vector<std::string> strings, AssignTo &output) {
output.clear();
while(!strings.empty()) {
typename std::remove_const<typename std::tuple_element<0, typename ConvertTo::value_type>::type>::type v1;
typename std::tuple_element<1, typename ConvertTo::value_type>::type v2;
bool retval = tuple_type_conversion<decltype(v1), decltype(v1)>(strings, v1);
if(!strings.empty()) {
retval = retval && tuple_type_conversion<decltype(v2), decltype(v2)>(strings, v2);
}
if(retval) {
output.insert(output.end(), typename AssignTo::value_type{v1, v2});
} else {
return false;
}
}
return (!output.empty());
}
/// lexical conversion of tuples with type count>2 or tuples of types of some element with a type size>=2
template <class AssignTo,
class ConvertTo,
enable_if_t<is_tuple_like<AssignTo>::value && is_tuple_like<ConvertTo>::value &&
(type_count_base<ConvertTo>::value != type_count<ConvertTo>::value ||
type_count<ConvertTo>::value > 2),
detail::enabler>>
bool lexical_conversion(const std::vector<std ::string> &strings, AssignTo &output) {
static_assert(
!is_tuple_like<ConvertTo>::value || type_count_base<AssignTo>::value == type_count_base<ConvertTo>::value,
"if the conversion type is defined as a tuple it must be the same size as the type you are converting to");
return tuple_conversion<AssignTo, ConvertTo, 0>(strings, output);
}
/// Lexical conversion of a vector types for everything but tuples of two elements and types of size 1
template <class AssignTo,
class ConvertTo,
enable_if_t<is_mutable_container<AssignTo>::value && is_mutable_container<ConvertTo>::value &&
type_count_base<ConvertTo>::value != 2 &&
((type_count<ConvertTo>::value > 2) ||
(type_count<ConvertTo>::value > type_count_base<ConvertTo>::value)),
detail::enabler>>
bool lexical_conversion(const std::vector<std ::string> &strings, AssignTo &output) {
bool retval = true;
output.clear();
std::vector<std::string> temp;
std::size_t ii{0};
std::size_t icount{0};
std::size_t xcm{type_count<ConvertTo>::value};
auto ii_max = strings.size();
while(ii < ii_max) {
temp.push_back(strings[ii]);
++ii;
++icount;
if(icount == xcm || is_separator(temp.back()) || ii == ii_max) {
if(static_cast<int>(xcm) > type_count_min<ConvertTo>::value && is_separator(temp.back())) {
temp.pop_back();
}
typename AssignTo::value_type temp_out;
retval = retval &&
lexical_conversion<typename AssignTo::value_type, typename ConvertTo::value_type>(temp, temp_out);
temp.clear();
if(!retval) {
return false;
}
output.insert(output.end(), std::move(temp_out));
icount = 0;
}
}
return retval;
}
/// conversion for wrapper types
template <typename AssignTo,
class ConvertTo,
enable_if_t<classify_object<ConvertTo>::value == object_category::wrapper_value &&
std::is_assignable<ConvertTo &, ConvertTo>::value,
detail::enabler> = detail::dummy>
bool lexical_conversion(const std::vector<std::string> &strings, AssignTo &output) {
if(strings.empty() || strings.front().empty()) {
output = ConvertTo{};
return true;
}
typename ConvertTo::value_type val;
if(lexical_conversion<typename ConvertTo::value_type, typename ConvertTo::value_type>(strings, val)) {
output = ConvertTo{val};
return true;
}
return false;
}
/// conversion for wrapper types
template <typename AssignTo,
class ConvertTo,
enable_if_t<classify_object<ConvertTo>::value == object_category::wrapper_value &&
!std::is_assignable<AssignTo &, ConvertTo>::value,
detail::enabler> = detail::dummy>
bool lexical_conversion(const std::vector<std::string> &strings, AssignTo &output) {
using ConvertType = typename ConvertTo::value_type;
if(strings.empty() || strings.front().empty()) {
output = ConvertType{};
return true;
}
ConvertType val;
if(lexical_conversion<typename ConvertTo::value_type, typename ConvertTo::value_type>(strings, val)) {
output = val;
return true;
}
return false;
}
/// Sum a vector of strings
inline std::string sum_string_vector(const std::vector<std::string> &values) {
double val{0.0};
bool fail{false};
std::string output;
for(const auto &arg : values) {
double tv{0.0};
auto comp = lexical_cast(arg, tv);
if(!comp) {
errno = 0;
auto fv = detail::to_flag_value(arg);
fail = (errno != 0);
if(fail) {
break;
}
tv = static_cast<double>(fv);
}
val += tv;
}
if(fail) {
for(const auto &arg : values) {
output.append(arg);
}
} else {
std::ostringstream out;
out.precision(16);
out << val;
output = out.str();
}
return output;
}
} // namespace detail
namespace detail {
// Returns false if not a short option. Otherwise, sets opt name and rest and returns true
CLI11_INLINE bool split_short(const std::string &current, std::string &name, std::string &rest);
// Returns false if not a long option. Otherwise, sets opt name and other side of = and returns true
CLI11_INLINE bool split_long(const std::string &current, std::string &name, std::string &value);
// Returns false if not a windows style option. Otherwise, sets opt name and value and returns true
CLI11_INLINE bool split_windows_style(const std::string &current, std::string &name, std::string &value);
// Splits a string into multiple long and short names
CLI11_INLINE std::vector<std::string> split_names(std::string current);
/// extract default flag values either {def} or starting with a !
CLI11_INLINE std::vector<std::pair<std::string, std::string>> get_default_flag_values(const std::string &str);
/// Get a vector of short names, one of long names, and a single name
CLI11_INLINE std::tuple<std::vector<std::string>, std::vector<std::string>, std::string>
get_names(const std::vector<std::string> &input);
} // namespace detail
namespace detail {
CLI11_INLINE bool split_short(const std::string &current, std::string &name, std::string &rest) {
if(current.size() > 1 && current[0] == '-' && valid_first_char(current[1])) {
name = current.substr(1, 1);
rest = current.substr(2);
return true;
}
return false;
}
CLI11_INLINE bool split_long(const std::string &current, std::string &name, std::string &value) {
if(current.size() > 2 && current.compare(0, 2, "--") == 0 && valid_first_char(current[2])) {
auto loc = current.find_first_of('=');
if(loc != std::string::npos) {
name = current.substr(2, loc - 2);
value = current.substr(loc + 1);
} else {
name = current.substr(2);
value = "";
}
return true;
}
return false;
}
CLI11_INLINE bool split_windows_style(const std::string &current, std::string &name, std::string &value) {
if(current.size() > 1 && current[0] == '/' && valid_first_char(current[1])) {
auto loc = current.find_first_of(':');
if(loc != std::string::npos) {
name = current.substr(1, loc - 1);
value = current.substr(loc + 1);
} else {
name = current.substr(1);
value = "";
}
return true;
}
return false;
}
CLI11_INLINE std::vector<std::string> split_names(std::string current) {
std::vector<std::string> output;
std::size_t val = 0;
while((val = current.find(',')) != std::string::npos) {
output.push_back(trim_copy(current.substr(0, val)));
current = current.substr(val + 1);
}
output.push_back(trim_copy(current));
return output;
}
CLI11_INLINE std::vector<std::pair<std::string, std::string>> get_default_flag_values(const std::string &str) {
std::vector<std::string> flags = split_names(str);
flags.erase(std::remove_if(flags.begin(),
flags.end(),
[](const std::string &name) {
return ((name.empty()) || (!(((name.find_first_of('{') != std::string::npos) &&
(name.back() == '}')) ||
(name[0] == '!'))));
}),
flags.end());
std::vector<std::pair<std::string, std::string>> output;
output.reserve(flags.size());
for(auto &flag : flags) {
auto def_start = flag.find_first_of('{');
std::string defval = "false";
if((def_start != std::string::npos) && (flag.back() == '}')) {
defval = flag.substr(def_start + 1);
defval.pop_back();
flag.erase(def_start, std::string::npos); // NOLINT(readability-suspicious-call-argument)
}
flag.erase(0, flag.find_first_not_of("-!"));
output.emplace_back(flag, defval);
}
return output;
}
CLI11_INLINE std::tuple<std::vector<std::string>, std::vector<std::string>, std::string>
get_names(const std::vector<std::string> &input) {
std::vector<std::string> short_names;
std::vector<std::string> long_names;
std::string pos_name;
for(std::string name : input) {
if(name.length() == 0) {
continue;
}
if(name.length() > 1 && name[0] == '-' && name[1] != '-') {
if(name.length() == 2 && valid_first_char(name[1]))
short_names.emplace_back(1, name[1]);
else if(name.length() > 2)
throw BadNameString::MissingDash(name);
else
throw BadNameString::OneCharName(name);
} else if(name.length() > 2 && name.substr(0, 2) == "--") {
name = name.substr(2);
if(valid_name_string(name))
long_names.push_back(name);
else
throw BadNameString::BadLongName(name);
} else if(name == "-" || name == "--") {
throw BadNameString::DashesOnly(name);
} else {
if(!pos_name.empty())
throw BadNameString::MultiPositionalNames(name);
if(valid_name_string(name)) {
pos_name = name;
} else {
throw BadNameString::BadPositionalName(name);
}
}
}
return std::make_tuple(short_names, long_names, pos_name);
}
} // namespace detail
class App;
/// Holds values to load into Options
struct ConfigItem {
/// This is the list of parents
std::vector<std::string> parents{};
/// This is the name
std::string name{};
/// Listing of inputs
std::vector<std::string> inputs{};
/// The list of parents and name joined by "."
CLI11_NODISCARD std::string fullname() const {
std::vector<std::string> tmp = parents;
tmp.emplace_back(name);
return detail::join(tmp, ".");
}
};
/// This class provides a converter for configuration files.
class Config {
protected:
std::vector<ConfigItem> items{};
public:
/// Convert an app into a configuration
virtual std::string to_config(const App *, bool, bool, std::string) const = 0;
/// Convert a configuration into an app
virtual std::vector<ConfigItem> from_config(std::istream &) const = 0;
/// Get a flag value
CLI11_NODISCARD virtual std::string to_flag(const ConfigItem &item) const {
if(item.inputs.size() == 1) {
return item.inputs.at(0);
}
if(item.inputs.empty()) {
return "{}";
}
throw ConversionError::TooManyInputsFlag(item.fullname()); // LCOV_EXCL_LINE
}
/// Parse a config file, throw an error (ParseError:ConfigParseError or FileError) on failure
CLI11_NODISCARD std::vector<ConfigItem> from_file(const std::string &name) const {
std::ifstream input{name};
if(!input.good())
throw FileError::Missing(name);
return from_config(input);
}
/// Virtual destructor
virtual ~Config() = default;
};
/// This converter works with INI/TOML files; to write INI files use ConfigINI
class ConfigBase : public Config {
protected:
/// the character used for comments
char commentChar = '#';
/// the character used to start an array '\0' is a default to not use
char arrayStart = '[';
/// the character used to end an array '\0' is a default to not use
char arrayEnd = ']';
/// the character used to separate elements in an array
char arraySeparator = ',';
/// the character used separate the name from the value
char valueDelimiter = '=';
/// the character to use around strings
char stringQuote = '"';
/// the character to use around single characters and literal strings
char literalQuote = '\'';
/// the maximum number of layers to allow
uint8_t maximumLayers{255};
/// the separator used to separator parent layers
char parentSeparatorChar{'.'};
/// Specify the configuration index to use for arrayed sections
int16_t configIndex{-1};
/// Specify the configuration section that should be used
std::string configSection{};
public:
std::string
to_config(const App * /*app*/, bool default_also, bool write_description, std::string prefix) const override;
std::vector<ConfigItem> from_config(std::istream &input) const override;
/// Specify the configuration for comment characters
ConfigBase *comment(char cchar) {
commentChar = cchar;
return this;
}
/// Specify the start and end characters for an array
ConfigBase *arrayBounds(char aStart, char aEnd) {
arrayStart = aStart;
arrayEnd = aEnd;
return this;
}
/// Specify the delimiter character for an array
ConfigBase *arrayDelimiter(char aSep) {
arraySeparator = aSep;
return this;
}
/// Specify the delimiter between a name and value
ConfigBase *valueSeparator(char vSep) {
valueDelimiter = vSep;
return this;
}
/// Specify the quote characters used around strings and literal strings
ConfigBase *quoteCharacter(char qString, char literalChar) {
stringQuote = qString;
literalQuote = literalChar;
return this;
}
/// Specify the maximum number of parents
ConfigBase *maxLayers(uint8_t layers) {
maximumLayers = layers;
return this;
}
/// Specify the separator to use for parent layers
ConfigBase *parentSeparator(char sep) {
parentSeparatorChar = sep;
return this;
}
/// get a reference to the configuration section
std::string &sectionRef() { return configSection; }
/// get the section
CLI11_NODISCARD const std::string &section() const { return configSection; }
/// specify a particular section of the configuration file to use
ConfigBase *section(const std::string &sectionName) {
configSection = sectionName;
return this;
}
/// get a reference to the configuration index
int16_t &indexRef() { return configIndex; }
/// get the section index
CLI11_NODISCARD int16_t index() const { return configIndex; }
/// specify a particular index in the section to use (-1) for all sections to use
ConfigBase *index(int16_t sectionIndex) {
configIndex = sectionIndex;
return this;
}
};
/// the default Config is the TOML file format
using ConfigTOML = ConfigBase;
/// ConfigINI generates a "standard" INI compliant output
class ConfigINI : public ConfigTOML {
public:
ConfigINI() {
commentChar = ';';
arrayStart = '\0';
arrayEnd = '\0';
arraySeparator = ' ';
valueDelimiter = '=';
}
};
class Option;
/// @defgroup validator_group Validators
/// @brief Some validators that are provided
///
/// These are simple `std::string(const std::string&)` validators that are useful. They return
/// a string if the validation fails. A custom struct is provided, as well, with the same user
/// semantics, but with the ability to provide a new type name.
/// @{
///
class Validator {
protected:
/// This is the description function, if empty the description_ will be used
std::function<std::string()> desc_function_{[]() { return std::string{}; }};
/// This is the base function that is to be called.
/// Returns a string error message if validation fails.
std::function<std::string(std::string &)> func_{[](std::string &) { return std::string{}; }};
/// The name for search purposes of the Validator
std::string name_{};
/// A Validator will only apply to an indexed value (-1 is all elements)
int application_index_ = -1;
/// Enable for Validator to allow it to be disabled if need be
bool active_{true};
/// specify that a validator should not modify the input
bool non_modifying_{false};
Validator(std::string validator_desc, std::function<std::string(std::string &)> func)
: desc_function_([validator_desc]() { return validator_desc; }), func_(std::move(func)) {}
public:
Validator() = default;
/// Construct a Validator with just the description string
explicit Validator(std::string validator_desc) : desc_function_([validator_desc]() { return validator_desc; }) {}
/// Construct Validator from basic information
Validator(std::function<std::string(std::string &)> op, std::string validator_desc, std::string validator_name = "")
: desc_function_([validator_desc]() { return validator_desc; }), func_(std::move(op)),
name_(std::move(validator_name)) {}
/// Set the Validator operation function
Validator &operation(std::function<std::string(std::string &)> op) {
func_ = std::move(op);
return *this;
}
/// This is the required operator for a Validator - provided to help
/// users (CLI11 uses the member `func` directly)
std::string operator()(std::string &str) const;
/// This is the required operator for a Validator - provided to help
/// users (CLI11 uses the member `func` directly)
std::string operator()(const std::string &str) const {
std::string value = str;
return (active_) ? func_(value) : std::string{};
}
/// Specify the type string
Validator &description(std::string validator_desc) {
desc_function_ = [validator_desc]() { return validator_desc; };
return *this;
}
/// Specify the type string
CLI11_NODISCARD Validator description(std::string validator_desc) const;
/// Generate type description information for the Validator
CLI11_NODISCARD std::string get_description() const {
if(active_) {
return desc_function_();
}
return std::string{};
}
/// Specify the type string
Validator &name(std::string validator_name) {
name_ = std::move(validator_name);
return *this;
}
/// Specify the type string
CLI11_NODISCARD Validator name(std::string validator_name) const {
Validator newval(*this);
newval.name_ = std::move(validator_name);
return newval;
}
/// Get the name of the Validator
CLI11_NODISCARD const std::string &get_name() const { return name_; }
/// Specify whether the Validator is active or not
Validator &active(bool active_val = true) {
active_ = active_val;
return *this;
}
/// Specify whether the Validator is active or not
CLI11_NODISCARD Validator active(bool active_val = true) const {
Validator newval(*this);
newval.active_ = active_val;
return newval;
}
/// Specify whether the Validator can be modifying or not
Validator &non_modifying(bool no_modify = true) {
non_modifying_ = no_modify;
return *this;
}
/// Specify the application index of a validator
Validator &application_index(int app_index) {
application_index_ = app_index;
return *this;
}
/// Specify the application index of a validator
CLI11_NODISCARD Validator application_index(int app_index) const {
Validator newval(*this);
newval.application_index_ = app_index;
return newval;
}
/// Get the current value of the application index
CLI11_NODISCARD int get_application_index() const { return application_index_; }
/// Get a boolean if the validator is active
CLI11_NODISCARD bool get_active() const { return active_; }
/// Get a boolean if the validator is allowed to modify the input returns true if it can modify the input
CLI11_NODISCARD bool get_modifying() const { return !non_modifying_; }
/// Combining validators is a new validator. Type comes from left validator if function, otherwise only set if the
/// same.
Validator operator&(const Validator &other) const;
/// Combining validators is a new validator. Type comes from left validator if function, otherwise only set if the
/// same.
Validator operator|(const Validator &other) const;
/// Create a validator that fails when a given validator succeeds
Validator operator!() const;
private:
void _merge_description(const Validator &val1, const Validator &val2, const std::string &merger);
};
/// Class wrapping some of the accessors of Validator
class CustomValidator : public Validator {
public:
};
// The implementation of the built in validators is using the Validator class;
// the user is only expected to use the const (static) versions (since there's no setup).
// Therefore, this is in detail.
namespace detail {
/// CLI enumeration of different file types
enum class path_type { nonexistent, file, directory };
/// get the type of the path from a file name
CLI11_INLINE path_type check_path(const char *file) noexcept;
/// Check for an existing file (returns error message if check fails)
class ExistingFileValidator : public Validator {
public:
ExistingFileValidator();
};
/// Check for an existing directory (returns error message if check fails)
class ExistingDirectoryValidator : public Validator {
public:
ExistingDirectoryValidator();
};
/// Check for an existing path
class ExistingPathValidator : public Validator {
public:
ExistingPathValidator();
};
/// Check for an non-existing path
class NonexistentPathValidator : public Validator {
public:
NonexistentPathValidator();
};
/// Validate the given string is a legal ipv4 address
class IPV4Validator : public Validator {
public:
IPV4Validator();
};
class EscapedStringTransformer : public Validator {
public:
EscapedStringTransformer();
};
} // namespace detail
// Static is not needed here, because global const implies static.
/// Check for existing file (returns error message if check fails)
const detail::ExistingFileValidator ExistingFile;
/// Check for an existing directory (returns error message if check fails)
const detail::ExistingDirectoryValidator ExistingDirectory;
/// Check for an existing path
const detail::ExistingPathValidator ExistingPath;
/// Check for an non-existing path
const detail::NonexistentPathValidator NonexistentPath;
/// Check for an IP4 address
const detail::IPV4Validator ValidIPV4;
/// convert escaped characters into their associated values
const detail::EscapedStringTransformer EscapedString;
/// Validate the input as a particular type
template <typename DesiredType> class TypeValidator : public Validator {
public:
explicit TypeValidator(const std::string &validator_name)
: Validator(validator_name, [](std::string &input_string) {
using CLI::detail::lexical_cast;
auto val = DesiredType();
if(!lexical_cast(input_string, val)) {
return std::string("Failed parsing ") + input_string + " as a " + detail::type_name<DesiredType>();
}
return std::string();
}) {}
TypeValidator() : TypeValidator(detail::type_name<DesiredType>()) {}
};
/// Check for a number
const TypeValidator<double> Number("NUMBER");
/// Modify a path if the file is a particular default location, can be used as Check or transform
/// with the error return optionally disabled
class FileOnDefaultPath : public Validator {
public:
explicit FileOnDefaultPath(std::string default_path, bool enableErrorReturn = true);
};
/// Produce a range (factory). Min and max are inclusive.
class Range : public Validator {
public:
/// This produces a range with min and max inclusive.
///
/// Note that the constructor is templated, but the struct is not, so C++17 is not
/// needed to provide nice syntax for Range(a,b).
template <typename T>
Range(T min_val, T max_val, const std::string &validator_name = std::string{}) : Validator(validator_name) {
if(validator_name.empty()) {
std::stringstream out;
out << detail::type_name<T>() << " in [" << min_val << " - " << max_val << "]";
description(out.str());
}
func_ = [min_val, max_val](std::string &input) {
using CLI::detail::lexical_cast;
T val;
bool converted = lexical_cast(input, val);
if((!converted) || (val < min_val || val > max_val)) {
std::stringstream out;
out << "Value " << input << " not in range [";
out << min_val << " - " << max_val << "]";
return out.str();
}
return std::string{};
};
}
/// Range of one value is 0 to value
template <typename T>
explicit Range(T max_val, const std::string &validator_name = std::string{})
: Range(static_cast<T>(0), max_val, validator_name) {}
};
/// Check for a non negative number
const Range NonNegativeNumber((std::numeric_limits<double>::max)(), "NONNEGATIVE");
/// Check for a positive valued number (val>0.0), <double>::min here is the smallest positive number
const Range PositiveNumber((std::numeric_limits<double>::min)(), (std::numeric_limits<double>::max)(), "POSITIVE");
/// Produce a bounded range (factory). Min and max are inclusive.
class Bound : public Validator {
public:
/// This bounds a value with min and max inclusive.
///
/// Note that the constructor is templated, but the struct is not, so C++17 is not
/// needed to provide nice syntax for Range(a,b).
template <typename T> Bound(T min_val, T max_val) {
std::stringstream out;
out << detail::type_name<T>() << " bounded to [" << min_val << " - " << max_val << "]";
description(out.str());
func_ = [min_val, max_val](std::string &input) {
using CLI::detail::lexical_cast;
T val;
bool converted = lexical_cast(input, val);
if(!converted) {
return std::string("Value ") + input + " could not be converted";
}
if(val < min_val)
input = detail::to_string(min_val);
else if(val > max_val)
input = detail::to_string(max_val);
return std::string{};
};
}
/// Range of one value is 0 to value
template <typename T> explicit Bound(T max_val) : Bound(static_cast<T>(0), max_val) {}
};
namespace detail {
template <typename T,
enable_if_t<is_copyable_ptr<typename std::remove_reference<T>::type>::value, detail::enabler> = detail::dummy>
auto smart_deref(T value) -> decltype(*value) {
return *value;
}
template <
typename T,
enable_if_t<!is_copyable_ptr<typename std::remove_reference<T>::type>::value, detail::enabler> = detail::dummy>
typename std::remove_reference<T>::type &smart_deref(T &value) {
return value;
}
/// Generate a string representation of a set
template <typename T> std::string generate_set(const T &set) {
using element_t = typename detail::element_type<T>::type;
using iteration_type_t = typename detail::pair_adaptor<element_t>::value_type; // the type of the object pair
std::string out(1, '{');
out.append(detail::join(
detail::smart_deref(set),
[](const iteration_type_t &v) { return detail::pair_adaptor<element_t>::first(v); },
","));
out.push_back('}');
return out;
}
/// Generate a string representation of a map
template <typename T> std::string generate_map(const T &map, bool key_only = false) {
using element_t = typename detail::element_type<T>::type;
using iteration_type_t = typename detail::pair_adaptor<element_t>::value_type; // the type of the object pair
std::string out(1, '{');
out.append(detail::join(
detail::smart_deref(map),
[key_only](const iteration_type_t &v) {
std::string res{detail::to_string(detail::pair_adaptor<element_t>::first(v))};
if(!key_only) {
res.append("->");
res += detail::to_string(detail::pair_adaptor<element_t>::second(v));
}
return res;
},
","));
out.push_back('}');
return out;
}
template <typename C, typename V> struct has_find {
template <typename CC, typename VV>
static auto test(int) -> decltype(std::declval<CC>().find(std::declval<VV>()), std::true_type());
template <typename, typename> static auto test(...) -> decltype(std::false_type());
static const auto value = decltype(test<C, V>(0))::value;
using type = std::integral_constant<bool, value>;
};
/// A search function
template <typename T, typename V, enable_if_t<!has_find<T, V>::value, detail::enabler> = detail::dummy>
auto search(const T &set, const V &val) -> std::pair<bool, decltype(std::begin(detail::smart_deref(set)))> {
using element_t = typename detail::element_type<T>::type;
auto &setref = detail::smart_deref(set);
auto it = std::find_if(std::begin(setref), std::end(setref), [&val](decltype(*std::begin(setref)) v) {
return (detail::pair_adaptor<element_t>::first(v) == val);
});
return {(it != std::end(setref)), it};
}
/// A search function that uses the built in find function
template <typename T, typename V, enable_if_t<has_find<T, V>::value, detail::enabler> = detail::dummy>
auto search(const T &set, const V &val) -> std::pair<bool, decltype(std::begin(detail::smart_deref(set)))> {
auto &setref = detail::smart_deref(set);
auto it = setref.find(val);
return {(it != std::end(setref)), it};
}
/// A search function with a filter function
template <typename T, typename V>
auto search(const T &set, const V &val, const std::function<V(V)> &filter_function)
-> std::pair<bool, decltype(std::begin(detail::smart_deref(set)))> {
using element_t = typename detail::element_type<T>::type;
// do the potentially faster first search
auto res = search(set, val);
if((res.first) || (!(filter_function))) {
return res;
}
// if we haven't found it do the longer linear search with all the element translations
auto &setref = detail::smart_deref(set);
auto it = std::find_if(std::begin(setref), std::end(setref), [&](decltype(*std::begin(setref)) v) {
V a{detail::pair_adaptor<element_t>::first(v)};
a = filter_function(a);
return (a == val);
});
return {(it != std::end(setref)), it};
}
// the following suggestion was made by Nikita Ofitserov(@himikof)
// done in templates to prevent compiler warnings on negation of unsigned numbers
/// Do a check for overflow on signed numbers
template <typename T>
inline typename std::enable_if<std::is_signed<T>::value, T>::type overflowCheck(const T &a, const T &b) {
if((a > 0) == (b > 0)) {
return ((std::numeric_limits<T>::max)() / (std::abs)(a) < (std::abs)(b));
}
return ((std::numeric_limits<T>::min)() / (std::abs)(a) > -(std::abs)(b));
}
/// Do a check for overflow on unsigned numbers
template <typename T>
inline typename std::enable_if<!std::is_signed<T>::value, T>::type overflowCheck(const T &a, const T &b) {
return ((std::numeric_limits<T>::max)() / a < b);
}
/// Performs a *= b; if it doesn't cause integer overflow. Returns false otherwise.
template <typename T> typename std::enable_if<std::is_integral<T>::value, bool>::type checked_multiply(T &a, T b) {
if(a == 0 || b == 0 || a == 1 || b == 1) {
a *= b;
return true;
}
if(a == (std::numeric_limits<T>::min)() || b == (std::numeric_limits<T>::min)()) {
return false;
}
if(overflowCheck(a, b)) {
return false;
}
a *= b;
return true;
}
/// Performs a *= b; if it doesn't equal infinity. Returns false otherwise.
template <typename T>
typename std::enable_if<std::is_floating_point<T>::value, bool>::type checked_multiply(T &a, T b) {
T c = a * b;
if(std::isinf(c) && !std::isinf(a) && !std::isinf(b)) {
return false;
}
a = c;
return true;
}
} // namespace detail
/// Verify items are in a set
class IsMember : public Validator {
public:
using filter_fn_t = std::function<std::string(std::string)>;
/// This allows in-place construction using an initializer list
template <typename T, typename... Args>
IsMember(std::initializer_list<T> values, Args &&...args)
: IsMember(std::vector<T>(values), std::forward<Args>(args)...) {}
/// This checks to see if an item is in a set (empty function)
template <typename T> explicit IsMember(T &&set) : IsMember(std::forward<T>(set), nullptr) {}
/// This checks to see if an item is in a set: pointer or copy version. You can pass in a function that will filter
/// both sides of the comparison before computing the comparison.
template <typename T, typename F> explicit IsMember(T set, F filter_function) {
// Get the type of the contained item - requires a container have ::value_type
// if the type does not have first_type and second_type, these are both value_type
using element_t = typename detail::element_type<T>::type; // Removes (smart) pointers if needed
using item_t = typename detail::pair_adaptor<element_t>::first_type; // Is value_type if not a map
using local_item_t = typename IsMemberType<item_t>::type; // This will convert bad types to good ones
// (const char * to std::string)
// Make a local copy of the filter function, using a std::function if not one already
std::function<local_item_t(local_item_t)> filter_fn = filter_function;
// This is the type name for help, it will take the current version of the set contents
desc_function_ = [set]() { return detail::generate_set(detail::smart_deref(set)); };
// This is the function that validates
// It stores a copy of the set pointer-like, so shared_ptr will stay alive
func_ = [set, filter_fn](std::string &input) {
using CLI::detail::lexical_cast;
local_item_t b;
if(!lexical_cast(input, b)) {
throw ValidationError(input); // name is added later
}
if(filter_fn) {
b = filter_fn(b);
}
auto res = detail::search(set, b, filter_fn);
if(res.first) {
// Make sure the version in the input string is identical to the one in the set
if(filter_fn) {
input = detail::value_string(detail::pair_adaptor<element_t>::first(*(res.second)));
}
// Return empty error string (success)
return std::string{};
}
// If you reach this point, the result was not found
return input + " not in " + detail::generate_set(detail::smart_deref(set));
};
}
/// You can pass in as many filter functions as you like, they nest (string only currently)
template <typename T, typename... Args>
IsMember(T &&set, filter_fn_t filter_fn_1, filter_fn_t filter_fn_2, Args &&...other)
: IsMember(
std::forward<T>(set),
[filter_fn_1, filter_fn_2](std::string a) { return filter_fn_2(filter_fn_1(a)); },
other...) {}
};
/// definition of the default transformation object
template <typename T> using TransformPairs = std::vector<std::pair<std::string, T>>;
/// Translate named items to other or a value set
class Transformer : public Validator {
public:
using filter_fn_t = std::function<std::string(std::string)>;
/// This allows in-place construction
template <typename... Args>
Transformer(std::initializer_list<std::pair<std::string, std::string>> values, Args &&...args)
: Transformer(TransformPairs<std::string>(values), std::forward<Args>(args)...) {}
/// direct map of std::string to std::string
template <typename T> explicit Transformer(T &&mapping) : Transformer(std::forward<T>(mapping), nullptr) {}
/// This checks to see if an item is in a set: pointer or copy version. You can pass in a function that will filter
/// both sides of the comparison before computing the comparison.
template <typename T, typename F> explicit Transformer(T mapping, F filter_function) {
static_assert(detail::pair_adaptor<typename detail::element_type<T>::type>::value,
"mapping must produce value pairs");
// Get the type of the contained item - requires a container have ::value_type
// if the type does not have first_type and second_type, these are both value_type
using element_t = typename detail::element_type<T>::type; // Removes (smart) pointers if needed
using item_t = typename detail::pair_adaptor<element_t>::first_type; // Is value_type if not a map
using local_item_t = typename IsMemberType<item_t>::type; // Will convert bad types to good ones
// (const char * to std::string)
// Make a local copy of the filter function, using a std::function if not one already
std::function<local_item_t(local_item_t)> filter_fn = filter_function;
// This is the type name for help, it will take the current version of the set contents
desc_function_ = [mapping]() { return detail::generate_map(detail::smart_deref(mapping)); };
func_ = [mapping, filter_fn](std::string &input) {
using CLI::detail::lexical_cast;
local_item_t b;
if(!lexical_cast(input, b)) {
return std::string();
// there is no possible way we can match anything in the mapping if we can't convert so just return
}
if(filter_fn) {
b = filter_fn(b);
}
auto res = detail::search(mapping, b, filter_fn);
if(res.first) {
input = detail::value_string(detail::pair_adaptor<element_t>::second(*res.second));
}
return std::string{};
};
}
/// You can pass in as many filter functions as you like, they nest
template <typename T, typename... Args>
Transformer(T &&mapping, filter_fn_t filter_fn_1, filter_fn_t filter_fn_2, Args &&...other)
: Transformer(
std::forward<T>(mapping),
[filter_fn_1, filter_fn_2](std::string a) { return filter_fn_2(filter_fn_1(a)); },
other...) {}
};
/// translate named items to other or a value set
class CheckedTransformer : public Validator {
public:
using filter_fn_t = std::function<std::string(std::string)>;
/// This allows in-place construction
template <typename... Args>
CheckedTransformer(std::initializer_list<std::pair<std::string, std::string>> values, Args &&...args)
: CheckedTransformer(TransformPairs<std::string>(values), std::forward<Args>(args)...) {}
/// direct map of std::string to std::string
template <typename T> explicit CheckedTransformer(T mapping) : CheckedTransformer(std::move(mapping), nullptr) {}
/// This checks to see if an item is in a set: pointer or copy version. You can pass in a function that will filter
/// both sides of the comparison before computing the comparison.
template <typename T, typename F> explicit CheckedTransformer(T mapping, F filter_function) {
static_assert(detail::pair_adaptor<typename detail::element_type<T>::type>::value,
"mapping must produce value pairs");
// Get the type of the contained item - requires a container have ::value_type
// if the type does not have first_type and second_type, these are both value_type
using element_t = typename detail::element_type<T>::type; // Removes (smart) pointers if needed
using item_t = typename detail::pair_adaptor<element_t>::first_type; // Is value_type if not a map
using local_item_t = typename IsMemberType<item_t>::type; // Will convert bad types to good ones
// (const char * to std::string)
using iteration_type_t = typename detail::pair_adaptor<element_t>::value_type; // the type of the object pair
// Make a local copy of the filter function, using a std::function if not one already
std::function<local_item_t(local_item_t)> filter_fn = filter_function;
auto tfunc = [mapping]() {
std::string out("value in ");
out += detail::generate_map(detail::smart_deref(mapping)) + " OR {";
out += detail::join(
detail::smart_deref(mapping),
[](const iteration_type_t &v) { return detail::to_string(detail::pair_adaptor<element_t>::second(v)); },
",");
out.push_back('}');
return out;
};
desc_function_ = tfunc;
func_ = [mapping, tfunc, filter_fn](std::string &input) {
using CLI::detail::lexical_cast;
local_item_t b;
bool converted = lexical_cast(input, b);
if(converted) {
if(filter_fn) {
b = filter_fn(b);
}
auto res = detail::search(mapping, b, filter_fn);
if(res.first) {
input = detail::value_string(detail::pair_adaptor<element_t>::second(*res.second));
return std::string{};
}
}
for(const auto &v : detail::smart_deref(mapping)) {
auto output_string = detail::value_string(detail::pair_adaptor<element_t>::second(v));
if(output_string == input) {
return std::string();
}
}
return "Check " + input + " " + tfunc() + " FAILED";
};
}
/// You can pass in as many filter functions as you like, they nest
template <typename T, typename... Args>
CheckedTransformer(T &&mapping, filter_fn_t filter_fn_1, filter_fn_t filter_fn_2, Args &&...other)
: CheckedTransformer(
std::forward<T>(mapping),
[filter_fn_1, filter_fn_2](std::string a) { return filter_fn_2(filter_fn_1(a)); },
other...) {}
};
/// Helper function to allow ignore_case to be passed to IsMember or Transform
inline std::string ignore_case(std::string item) { return detail::to_lower(item); }
/// Helper function to allow ignore_underscore to be passed to IsMember or Transform
inline std::string ignore_underscore(std::string item) { return detail::remove_underscore(item); }
/// Helper function to allow checks to ignore spaces to be passed to IsMember or Transform
inline std::string ignore_space(std::string item) {
item.erase(std::remove(std::begin(item), std::end(item), ' '), std::end(item));
item.erase(std::remove(std::begin(item), std::end(item), '\t'), std::end(item));
return item;
}
/// Multiply a number by a factor using given mapping.
/// Can be used to write transforms for SIZE or DURATION inputs.
///
/// Example:
/// With mapping = `{"b"->1, "kb"->1024, "mb"->1024*1024}`
/// one can recognize inputs like "100", "12kb", "100 MB",
/// that will be automatically transformed to 100, 14448, 104857600.
///
/// Output number type matches the type in the provided mapping.
/// Therefore, if it is required to interpret real inputs like "0.42 s",
/// the mapping should be of a type <string, float> or <string, double>.
class AsNumberWithUnit : public Validator {
public:
/// Adjust AsNumberWithUnit behavior.
/// CASE_SENSITIVE/CASE_INSENSITIVE controls how units are matched.
/// UNIT_OPTIONAL/UNIT_REQUIRED throws ValidationError
/// if UNIT_REQUIRED is set and unit literal is not found.
enum Options {
CASE_SENSITIVE = 0,
CASE_INSENSITIVE = 1,
UNIT_OPTIONAL = 0,
UNIT_REQUIRED = 2,
DEFAULT = CASE_INSENSITIVE | UNIT_OPTIONAL
};
template <typename Number>
explicit AsNumberWithUnit(std::map<std::string, Number> mapping,
Options opts = DEFAULT,
const std::string &unit_name = "UNIT") {
description(generate_description<Number>(unit_name, opts));
validate_mapping(mapping, opts);
// transform function
func_ = [mapping, opts](std::string &input) -> std::string {
Number num{};
detail::rtrim(input);
if(input.empty()) {
throw ValidationError("Input is empty");
}
// Find split position between number and prefix
auto unit_begin = input.end();
while(unit_begin > input.begin() && std::isalpha(*(unit_begin - 1), std::locale())) {
--unit_begin;
}
std::string unit{unit_begin, input.end()};
input.resize(static_cast<std::size_t>(std::distance(input.begin(), unit_begin)));
detail::trim(input);
if(opts & UNIT_REQUIRED && unit.empty()) {
throw ValidationError("Missing mandatory unit");
}
if(opts & CASE_INSENSITIVE) {
unit = detail::to_lower(unit);
}
if(unit.empty()) {
using CLI::detail::lexical_cast;
if(!lexical_cast(input, num)) {
throw ValidationError(std::string("Value ") + input + " could not be converted to " +
detail::type_name<Number>());
}
// No need to modify input if no unit passed
return {};
}
// find corresponding factor
auto it = mapping.find(unit);
if(it == mapping.end()) {
throw ValidationError(unit +
" unit not recognized. "
"Allowed values: " +
detail::generate_map(mapping, true));
}
if(!input.empty()) {
using CLI::detail::lexical_cast;
bool converted = lexical_cast(input, num);
if(!converted) {
throw ValidationError(std::string("Value ") + input + " could not be converted to " +
detail::type_name<Number>());
}
// perform safe multiplication
bool ok = detail::checked_multiply(num, it->second);
if(!ok) {
throw ValidationError(detail::to_string(num) + " multiplied by " + unit +
" factor would cause number overflow. Use smaller value.");
}
} else {
num = static_cast<Number>(it->second);
}
input = detail::to_string(num);
return {};
};
}
private:
/// Check that mapping contains valid units.
/// Update mapping for CASE_INSENSITIVE mode.
template <typename Number> static void validate_mapping(std::map<std::string, Number> &mapping, Options opts) {
for(auto &kv : mapping) {
if(kv.first.empty()) {
throw ValidationError("Unit must not be empty.");
}
if(!detail::isalpha(kv.first)) {
throw ValidationError("Unit must contain only letters.");
}
}
// make all units lowercase if CASE_INSENSITIVE
if(opts & CASE_INSENSITIVE) {
std::map<std::string, Number> lower_mapping;
for(auto &kv : mapping) {
auto s = detail::to_lower(kv.first);
if(lower_mapping.count(s)) {
throw ValidationError(std::string("Several matching lowercase unit representations are found: ") +
s);
}
lower_mapping[detail::to_lower(kv.first)] = kv.second;
}
mapping = std::move(lower_mapping);
}
}
/// Generate description like this: NUMBER [UNIT]
template <typename Number> static std::string generate_description(const std::string &name, Options opts) {
std::stringstream out;
out << detail::type_name<Number>() << ' ';
if(opts & UNIT_REQUIRED) {
out << name;
} else {
out << '[' << name << ']';
}
return out.str();
}
};
inline AsNumberWithUnit::Options operator|(const AsNumberWithUnit::Options &a, const AsNumberWithUnit::Options &b) {
return static_cast<AsNumberWithUnit::Options>(static_cast<int>(a) | static_cast<int>(b));
}
/// Converts a human-readable size string (with unit literal) to uin64_t size.
/// Example:
/// "100" => 100
/// "1 b" => 100
/// "10Kb" => 10240 // you can configure this to be interpreted as kilobyte (*1000) or kibibyte (*1024)
/// "10 KB" => 10240
/// "10 kb" => 10240
/// "10 kib" => 10240 // *i, *ib are always interpreted as *bibyte (*1024)
/// "10kb" => 10240
/// "2 MB" => 2097152
/// "2 EiB" => 2^61 // Units up to exibyte are supported
class AsSizeValue : public AsNumberWithUnit {
public:
using result_t = std::uint64_t;
/// If kb_is_1000 is true,
/// interpret 'kb', 'k' as 1000 and 'kib', 'ki' as 1024
/// (same applies to higher order units as well).
/// Otherwise, interpret all literals as factors of 1024.
/// The first option is formally correct, but
/// the second interpretation is more wide-spread
/// (see https://en.wikipedia.org/wiki/Binary_prefix).
explicit AsSizeValue(bool kb_is_1000);
private:
/// Get <size unit, factor> mapping
static std::map<std::string, result_t> init_mapping(bool kb_is_1000);
/// Cache calculated mapping
static std::map<std::string, result_t> get_mapping(bool kb_is_1000);
};
namespace detail {
/// Split a string into a program name and command line arguments
/// the string is assumed to contain a file name followed by other arguments
/// the return value contains is a pair with the first argument containing the program name and the second
/// everything else.
CLI11_INLINE std::pair<std::string, std::string> split_program_name(std::string commandline);
} // namespace detail
/// @}
CLI11_INLINE std::string Validator::operator()(std::string &str) const {
std::string retstring;
if(active_) {
if(non_modifying_) {
std::string value = str;
retstring = func_(value);
} else {
retstring = func_(str);
}
}
return retstring;
}
CLI11_NODISCARD CLI11_INLINE Validator Validator::description(std::string validator_desc) const {
Validator newval(*this);
newval.desc_function_ = [validator_desc]() { return validator_desc; };
return newval;
}
CLI11_INLINE Validator Validator::operator&(const Validator &other) const {
Validator newval;
newval._merge_description(*this, other, " AND ");
// Give references (will make a copy in lambda function)
const std::function<std::string(std::string & filename)> &f1 = func_;
const std::function<std::string(std::string & filename)> &f2 = other.func_;
newval.func_ = [f1, f2](std::string &input) {
std::string s1 = f1(input);
std::string s2 = f2(input);
if(!s1.empty() && !s2.empty())
return std::string("(") + s1 + ") AND (" + s2 + ")";
return s1 + s2;
};
newval.active_ = active_ && other.active_;
newval.application_index_ = application_index_;
return newval;
}
CLI11_INLINE Validator Validator::operator|(const Validator &other) const {
Validator newval;
newval._merge_description(*this, other, " OR ");
// Give references (will make a copy in lambda function)
const std::function<std::string(std::string &)> &f1 = func_;
const std::function<std::string(std::string &)> &f2 = other.func_;
newval.func_ = [f1, f2](std::string &input) {
std::string s1 = f1(input);
std::string s2 = f2(input);
if(s1.empty() || s2.empty())
return std::string();
return std::string("(") + s1 + ") OR (" + s2 + ")";
};
newval.active_ = active_ && other.active_;
newval.application_index_ = application_index_;
return newval;
}
CLI11_INLINE Validator Validator::operator!() const {
Validator newval;
const std::function<std::string()> &dfunc1 = desc_function_;
newval.desc_function_ = [dfunc1]() {
auto str = dfunc1();
return (!str.empty()) ? std::string("NOT ") + str : std::string{};
};
// Give references (will make a copy in lambda function)
const std::function<std::string(std::string & res)> &f1 = func_;
newval.func_ = [f1, dfunc1](std::string &test) -> std::string {
std::string s1 = f1(test);
if(s1.empty()) {
return std::string("check ") + dfunc1() + " succeeded improperly";
}
return std::string{};
};
newval.active_ = active_;
newval.application_index_ = application_index_;
return newval;
}
CLI11_INLINE void
Validator::_merge_description(const Validator &val1, const Validator &val2, const std::string &merger) {
const std::function<std::string()> &dfunc1 = val1.desc_function_;
const std::function<std::string()> &dfunc2 = val2.desc_function_;
desc_function_ = [=]() {
std::string f1 = dfunc1();
std::string f2 = dfunc2();
if((f1.empty()) || (f2.empty())) {
return f1 + f2;
}
return std::string(1, '(') + f1 + ')' + merger + '(' + f2 + ')';
};
}
namespace detail {
#if defined CLI11_HAS_FILESYSTEM && CLI11_HAS_FILESYSTEM > 0
CLI11_INLINE path_type check_path(const char *file) noexcept {
std::error_code ec;
auto stat = std::filesystem::status(to_path(file), ec);
if(ec) {
return path_type::nonexistent;
}
switch(stat.type()) {
case std::filesystem::file_type::none: // LCOV_EXCL_LINE
case std::filesystem::file_type::not_found:
return path_type::nonexistent; // LCOV_EXCL_LINE
case std::filesystem::file_type::directory:
return path_type::directory;
case std::filesystem::file_type::symlink:
case std::filesystem::file_type::block:
case std::filesystem::file_type::character:
case std::filesystem::file_type::fifo:
case std::filesystem::file_type::socket:
case std::filesystem::file_type::regular:
case std::filesystem::file_type::unknown:
default:
return path_type::file;
}
}
#else
CLI11_INLINE path_type check_path(const char *file) noexcept {
#if defined(_MSC_VER)
struct __stat64 buffer;
if(_stat64(file, &buffer) == 0) {
return ((buffer.st_mode & S_IFDIR) != 0) ? path_type::directory : path_type::file;
}
#else
struct stat buffer;
if(stat(file, &buffer) == 0) {
return ((buffer.st_mode & S_IFDIR) != 0) ? path_type::directory : path_type::file;
}
#endif
return path_type::nonexistent;
}
#endif
CLI11_INLINE ExistingFileValidator::ExistingFileValidator() : Validator("FILE") {
func_ = [](std::string &filename) {
auto path_result = check_path(filename.c_str());
if(path_result == path_type::nonexistent) {
return "File does not exist: " + filename;
}
if(path_result == path_type::directory) {
return "File is actually a directory: " + filename;
}
return std::string();
};
}
CLI11_INLINE ExistingDirectoryValidator::ExistingDirectoryValidator() : Validator("DIR") {
func_ = [](std::string &filename) {
auto path_result = check_path(filename.c_str());
if(path_result == path_type::nonexistent) {
return "Directory does not exist: " + filename;
}
if(path_result == path_type::file) {
return "Directory is actually a file: " + filename;
}
return std::string();
};
}
CLI11_INLINE ExistingPathValidator::ExistingPathValidator() : Validator("PATH(existing)") {
func_ = [](std::string &filename) {
auto path_result = check_path(filename.c_str());
if(path_result == path_type::nonexistent) {
return "Path does not exist: " + filename;
}
return std::string();
};
}
CLI11_INLINE NonexistentPathValidator::NonexistentPathValidator() : Validator("PATH(non-existing)") {
func_ = [](std::string &filename) {
auto path_result = check_path(filename.c_str());
if(path_result != path_type::nonexistent) {
return "Path already exists: " + filename;
}
return std::string();
};
}
CLI11_INLINE IPV4Validator::IPV4Validator() : Validator("IPV4") {
func_ = [](std::string &ip_addr) {
auto result = CLI::detail::split(ip_addr, '.');
if(result.size() != 4) {
return std::string("Invalid IPV4 address must have four parts (") + ip_addr + ')';
}
int num = 0;
for(const auto &var : result) {
using CLI::detail::lexical_cast;
bool retval = lexical_cast(var, num);
if(!retval) {
return std::string("Failed parsing number (") + var + ')';
}
if(num < 0 || num > 255) {
return std::string("Each IP number must be between 0 and 255 ") + var;
}
}
return std::string{};
};
}
CLI11_INLINE EscapedStringTransformer::EscapedStringTransformer() {
func_ = [](std::string &str) {
try {
if(str.size() > 1 && (str.front() == '\"' || str.front() == '\'' || str.front() == '`') &&
str.front() == str.back()) {
process_quoted_string(str);
} else if(str.find_first_of('\\') != std::string::npos) {
if(detail::is_binary_escaped_string(str)) {
str = detail::extract_binary_string(str);
} else {
str = remove_escaped_characters(str);
}
}
return std::string{};
} catch(const std::invalid_argument &ia) {
return std::string(ia.what());
}
};
}
} // namespace detail
CLI11_INLINE FileOnDefaultPath::FileOnDefaultPath(std::string default_path, bool enableErrorReturn)
: Validator("FILE") {
func_ = [default_path, enableErrorReturn](std::string &filename) {
auto path_result = detail::check_path(filename.c_str());
if(path_result == detail::path_type::nonexistent) {
std::string test_file_path = default_path;
if(default_path.back() != '/' && default_path.back() != '\\') {
// Add folder separator
test_file_path += '/';
}
test_file_path.append(filename);
path_result = detail::check_path(test_file_path.c_str());
if(path_result == detail::path_type::file) {
filename = test_file_path;
} else {
if(enableErrorReturn) {
return "File does not exist: " + filename;
}
}
}
return std::string{};
};
}
CLI11_INLINE AsSizeValue::AsSizeValue(bool kb_is_1000) : AsNumberWithUnit(get_mapping(kb_is_1000)) {
if(kb_is_1000) {
description("SIZE [b, kb(=1000b), kib(=1024b), ...]");
} else {
description("SIZE [b, kb(=1024b), ...]");
}
}
CLI11_INLINE std::map<std::string, AsSizeValue::result_t> AsSizeValue::init_mapping(bool kb_is_1000) {
std::map<std::string, result_t> m;
result_t k_factor = kb_is_1000 ? 1000 : 1024;
result_t ki_factor = 1024;
result_t k = 1;
result_t ki = 1;
m["b"] = 1;
for(std::string p : {"k", "m", "g", "t", "p", "e"}) {
k *= k_factor;
ki *= ki_factor;
m[p] = k;
m[p + "b"] = k;
m[p + "i"] = ki;
m[p + "ib"] = ki;
}
return m;
}
CLI11_INLINE std::map<std::string, AsSizeValue::result_t> AsSizeValue::get_mapping(bool kb_is_1000) {
if(kb_is_1000) {
static auto m = init_mapping(true);
return m;
}
static auto m = init_mapping(false);
return m;
}
namespace detail {
CLI11_INLINE std::pair<std::string, std::string> split_program_name(std::string commandline) {
// try to determine the programName
std::pair<std::string, std::string> vals;
trim(commandline);
auto esp = commandline.find_first_of(' ', 1);
while(detail::check_path(commandline.substr(0, esp).c_str()) != path_type::file) {
esp = commandline.find_first_of(' ', esp + 1);
if(esp == std::string::npos) {
// if we have reached the end and haven't found a valid file just assume the first argument is the
// program name
if(commandline[0] == '"' || commandline[0] == '\'' || commandline[0] == '`') {
bool embeddedQuote = false;
auto keyChar = commandline[0];
auto end = commandline.find_first_of(keyChar, 1);
while((end != std::string::npos) && (commandline[end - 1] == '\\')) { // deal with escaped quotes
end = commandline.find_first_of(keyChar, end + 1);
embeddedQuote = true;
}
if(end != std::string::npos) {
vals.first = commandline.substr(1, end - 1);
esp = end + 1;
if(embeddedQuote) {
vals.first = find_and_replace(vals.first, std::string("\\") + keyChar, std::string(1, keyChar));
}
} else {
esp = commandline.find_first_of(' ', 1);
}
} else {
esp = commandline.find_first_of(' ', 1);
}
break;
}
}
if(vals.first.empty()) {
vals.first = commandline.substr(0, esp);
rtrim(vals.first);
}
// strip the program name
vals.second = (esp < commandline.length() - 1) ? commandline.substr(esp + 1) : std::string{};
ltrim(vals.second);
return vals;
}
} // namespace detail
/// @}
class Option;
class App;
/// This enum signifies the type of help requested
///
/// This is passed in by App; all user classes must accept this as
/// the second argument.
enum class AppFormatMode {
Normal, ///< The normal, detailed help
All, ///< A fully expanded help
Sub, ///< Used when printed as part of expanded subcommand
};
/// This is the minimum requirements to run a formatter.
///
/// A user can subclass this is if they do not care at all
/// about the structure in CLI::Formatter.
class FormatterBase {
protected:
/// @name Options
///@{
/// The width of the first column
std::size_t column_width_{30};
/// @brief The required help printout labels (user changeable)
/// Values are Needs, Excludes, etc.
std::map<std::string, std::string> labels_{};
///@}
/// @name Basic
///@{
public:
FormatterBase() = default;
FormatterBase(const FormatterBase &) = default;
FormatterBase(FormatterBase &&) = default;
FormatterBase &operator=(const FormatterBase &) = default;
FormatterBase &operator=(FormatterBase &&) = default;
/// Adding a destructor in this form to work around bug in GCC 4.7
virtual ~FormatterBase() noexcept {} // NOLINT(modernize-use-equals-default)
/// This is the key method that puts together help
virtual std::string make_help(const App *, std::string, AppFormatMode) const = 0;
///@}
/// @name Setters
///@{
/// Set the "REQUIRED" label
void label(std::string key, std::string val) { labels_[key] = val; }
/// Set the column width
void column_width(std::size_t val) { column_width_ = val; }
///@}
/// @name Getters
///@{
/// Get the current value of a name (REQUIRED, etc.)
CLI11_NODISCARD std::string get_label(std::string key) const {
if(labels_.find(key) == labels_.end())
return key;
return labels_.at(key);
}
/// Get the current column width
CLI11_NODISCARD std::size_t get_column_width() const { return column_width_; }
///@}
};
/// This is a specialty override for lambda functions
class FormatterLambda final : public FormatterBase {
using funct_t = std::function<std::string(const App *, std::string, AppFormatMode)>;
/// The lambda to hold and run
funct_t lambda_;
public:
/// Create a FormatterLambda with a lambda function
explicit FormatterLambda(funct_t funct) : lambda_(std::move(funct)) {}
/// Adding a destructor (mostly to make GCC 4.7 happy)
~FormatterLambda() noexcept override {} // NOLINT(modernize-use-equals-default)
/// This will simply call the lambda function
std::string make_help(const App *app, std::string name, AppFormatMode mode) const override {
return lambda_(app, name, mode);
}
};
/// This is the default Formatter for CLI11. It pretty prints help output, and is broken into quite a few
/// overridable methods, to be highly customizable with minimal effort.
class Formatter : public FormatterBase {
public:
Formatter() = default;
Formatter(const Formatter &) = default;
Formatter(Formatter &&) = default;
Formatter &operator=(const Formatter &) = default;
Formatter &operator=(Formatter &&) = default;
/// @name Overridables
///@{
/// This prints out a group of options with title
///
CLI11_NODISCARD virtual std::string
make_group(std::string group, bool is_positional, std::vector<const Option *> opts) const;
/// This prints out just the positionals "group"
virtual std::string make_positionals(const App *app) const;
/// This prints out all the groups of options
std::string make_groups(const App *app, AppFormatMode mode) const;
/// This prints out all the subcommands
virtual std::string make_subcommands(const App *app, AppFormatMode mode) const;
/// This prints out a subcommand
virtual std::string make_subcommand(const App *sub) const;
/// This prints out a subcommand in help-all
virtual std::string make_expanded(const App *sub) const;
/// This prints out all the groups of options
virtual std::string make_footer(const App *app) const;
/// This displays the description line
virtual std::string make_description(const App *app) const;
/// This displays the usage line
virtual std::string make_usage(const App *app, std::string name) const;
/// This puts everything together
std::string make_help(const App * /*app*/, std::string, AppFormatMode) const override;
///@}
/// @name Options
///@{
/// This prints out an option help line, either positional or optional form
virtual std::string make_option(const Option *opt, bool is_positional) const {
std::stringstream out;
detail::format_help(
out, make_option_name(opt, is_positional) + make_option_opts(opt), make_option_desc(opt), column_width_);
return out.str();
}
/// @brief This is the name part of an option, Default: left column
virtual std::string make_option_name(const Option *, bool) const;
/// @brief This is the options part of the name, Default: combined into left column
virtual std::string make_option_opts(const Option *) const;
/// @brief This is the description. Default: Right column, on new line if left column too large
virtual std::string make_option_desc(const Option *) const;
/// @brief This is used to print the name on the USAGE line
virtual std::string make_option_usage(const Option *opt) const;
///@}
};
using results_t = std::vector<std::string>;
/// callback function definition
using callback_t = std::function<bool(const results_t &)>;
class Option;
class App;
using Option_p = std::unique_ptr<Option>;
/// Enumeration of the multiOption Policy selection
enum class MultiOptionPolicy : char {
Throw, //!< Throw an error if any extra arguments were given
TakeLast, //!< take only the last Expected number of arguments
TakeFirst, //!< take only the first Expected number of arguments
Join, //!< merge all the arguments together into a single string via the delimiter character default('\n')
TakeAll, //!< just get all the passed argument regardless
Sum, //!< sum all the arguments together if numerical or concatenate directly without delimiter
Reverse, //!< take only the last Expected number of arguments in reverse order
};
/// This is the CRTP base class for Option and OptionDefaults. It was designed this way
/// to share parts of the class; an OptionDefaults can copy to an Option.
template <typename CRTP> class OptionBase {
friend App;
protected:
/// The group membership
std::string group_ = std::string("Options");
/// True if this is a required option
bool required_{false};
/// Ignore the case when matching (option, not value)
bool ignore_case_{false};
/// Ignore underscores when matching (option, not value)
bool ignore_underscore_{false};
/// Allow this option to be given in a configuration file
bool configurable_{true};
/// Disable overriding flag values with '=value'
bool disable_flag_override_{false};
/// Specify a delimiter character for vector arguments
char delimiter_{'\0'};
/// Automatically capture default value
bool always_capture_default_{false};
/// Policy for handling multiple arguments beyond the expected Max
MultiOptionPolicy multi_option_policy_{MultiOptionPolicy::Throw};
/// Copy the contents to another similar class (one based on OptionBase)
template <typename T> void copy_to(T *other) const;
public:
// setters
/// Changes the group membership
CRTP *group(const std::string &name) {
if(!detail::valid_alias_name_string(name)) {
throw IncorrectConstruction("Group names may not contain newlines or null characters");
}
group_ = name;
return static_cast<CRTP *>(this);
}
/// Set the option as required
CRTP *required(bool value = true) {
required_ = value;
return static_cast<CRTP *>(this);
}
/// Support Plumbum term
CRTP *mandatory(bool value = true) { return required(value); }
CRTP *always_capture_default(bool value = true) {
always_capture_default_ = value;
return static_cast<CRTP *>(this);
}
// Getters
/// Get the group of this option
CLI11_NODISCARD const std::string &get_group() const { return group_; }
/// True if this is a required option
CLI11_NODISCARD bool get_required() const { return required_; }
/// The status of ignore case
CLI11_NODISCARD bool get_ignore_case() const { return ignore_case_; }
/// The status of ignore_underscore
CLI11_NODISCARD bool get_ignore_underscore() const { return ignore_underscore_; }
/// The status of configurable
CLI11_NODISCARD bool get_configurable() const { return configurable_; }
/// The status of configurable
CLI11_NODISCARD bool get_disable_flag_override() const { return disable_flag_override_; }
/// Get the current delimiter char
CLI11_NODISCARD char get_delimiter() const { return delimiter_; }
/// Return true if this will automatically capture the default value for help printing
CLI11_NODISCARD bool get_always_capture_default() const { return always_capture_default_; }
/// The status of the multi option policy
CLI11_NODISCARD MultiOptionPolicy get_multi_option_policy() const { return multi_option_policy_; }
// Shortcuts for multi option policy
/// Set the multi option policy to take last
CRTP *take_last() {
auto *self = static_cast<CRTP *>(this);
self->multi_option_policy(MultiOptionPolicy::TakeLast);
return self;
}
/// Set the multi option policy to take last
CRTP *take_first() {
auto *self = static_cast<CRTP *>(this);
self->multi_option_policy(MultiOptionPolicy::TakeFirst);
return self;
}
/// Set the multi option policy to take all arguments
CRTP *take_all() {
auto self = static_cast<CRTP *>(this);
self->multi_option_policy(MultiOptionPolicy::TakeAll);
return self;
}
/// Set the multi option policy to join
CRTP *join() {
auto *self = static_cast<CRTP *>(this);
self->multi_option_policy(MultiOptionPolicy::Join);
return self;
}
/// Set the multi option policy to join with a specific delimiter
CRTP *join(char delim) {
auto self = static_cast<CRTP *>(this);
self->delimiter_ = delim;
self->multi_option_policy(MultiOptionPolicy::Join);
return self;
}
/// Allow in a configuration file
CRTP *configurable(bool value = true) {
configurable_ = value;
return static_cast<CRTP *>(this);
}
/// Allow in a configuration file
CRTP *delimiter(char value = '\0') {
delimiter_ = value;
return static_cast<CRTP *>(this);
}
};
/// This is a version of OptionBase that only supports setting values,
/// for defaults. It is stored as the default option in an App.
class OptionDefaults : public OptionBase<OptionDefaults> {
public:
OptionDefaults() = default;
// Methods here need a different implementation if they are Option vs. OptionDefault
/// Take the last argument if given multiple times
OptionDefaults *multi_option_policy(MultiOptionPolicy value = MultiOptionPolicy::Throw) {
multi_option_policy_ = value;
return this;
}
/// Ignore the case of the option name
OptionDefaults *ignore_case(bool value = true) {
ignore_case_ = value;
return this;
}
/// Ignore underscores in the option name
OptionDefaults *ignore_underscore(bool value = true) {
ignore_underscore_ = value;
return this;
}
/// Disable overriding flag values with an '=<value>' segment
OptionDefaults *disable_flag_override(bool value = true) {
disable_flag_override_ = value;
return this;
}
/// set a delimiter character to split up single arguments to treat as multiple inputs
OptionDefaults *delimiter(char value = '\0') {
delimiter_ = value;
return this;
}
};
class Option : public OptionBase<Option> {
friend App;
protected:
/// @name Names
///@{
/// A list of the short names (`-a`) without the leading dashes
std::vector<std::string> snames_{};
/// A list of the long names (`--long`) without the leading dashes
std::vector<std::string> lnames_{};
/// A list of the flag names with the appropriate default value, the first part of the pair should be duplicates of
/// what is in snames or lnames but will trigger a particular response on a flag
std::vector<std::pair<std::string, std::string>> default_flag_values_{};
/// a list of flag names with specified default values;
std::vector<std::string> fnames_{};
/// A positional name
std::string pname_{};
/// If given, check the environment for this option
std::string envname_{};
///@}
/// @name Help
///@{
/// The description for help strings
std::string description_{};
/// A human readable default value, either manually set, captured, or captured by default
std::string default_str_{};
/// If given, replace the text that describes the option type and usage in the help text
std::string option_text_{};
/// A human readable type value, set when App creates this
///
/// This is a lambda function so "types" can be dynamic, such as when a set prints its contents.
std::function<std::string()> type_name_{[]() { return std::string(); }};
/// Run this function to capture a default (ignore if empty)
std::function<std::string()> default_function_{};
///@}
/// @name Configuration
///@{
/// The number of arguments that make up one option. max is the nominal type size, min is the minimum number of
/// strings
int type_size_max_{1};
/// The minimum number of arguments an option should be expecting
int type_size_min_{1};
/// The minimum number of expected values
int expected_min_{1};
/// The maximum number of expected values
int expected_max_{1};
/// A list of Validators to run on each value parsed
std::vector<Validator> validators_{};
/// A list of options that are required with this option
std::set<Option *> needs_{};
/// A list of options that are excluded with this option
std::set<Option *> excludes_{};
///@}
/// @name Other
///@{
/// link back up to the parent App for fallthrough
App *parent_{nullptr};
/// Options store a callback to do all the work
callback_t callback_{};
///@}
/// @name Parsing results
///@{
/// complete Results of parsing
results_t results_{};
/// results after reduction
results_t proc_results_{};
/// enumeration for the option state machine
enum class option_state : char {
parsing = 0, //!< The option is currently collecting parsed results
validated = 2, //!< the results have been validated
reduced = 4, //!< a subset of results has been generated
callback_run = 6, //!< the callback has been executed
};
/// Whether the callback has run (needed for INI parsing)
option_state current_option_state_{option_state::parsing};
/// Specify that extra args beyond type_size_max should be allowed
bool allow_extra_args_{false};
/// Specify that the option should act like a flag vs regular option
bool flag_like_{false};
/// Control option to run the callback to set the default
bool run_callback_for_default_{false};
/// flag indicating a separator needs to be injected after each argument call
bool inject_separator_{false};
/// flag indicating that the option should trigger the validation and callback chain on each result when loaded
bool trigger_on_result_{false};
/// flag indicating that the option should force the callback regardless if any results present
bool force_callback_{false};
///@}
/// Making an option by hand is not defined, it must be made by the App class
Option(std::string option_name, std::string option_description, callback_t callback, App *parent)
: description_(std::move(option_description)), parent_(parent), callback_(std::move(callback)) {
std::tie(snames_, lnames_, pname_) = detail::get_names(detail::split_names(option_name));
}
public:
/// @name Basic
///@{
Option(const Option &) = delete;
Option &operator=(const Option &) = delete;
/// Count the total number of times an option was passed
CLI11_NODISCARD std::size_t count() const { return results_.size(); }
/// True if the option was not passed
CLI11_NODISCARD bool empty() const { return results_.empty(); }
/// This bool operator returns true if any arguments were passed or the option callback is forced
explicit operator bool() const { return !empty() || force_callback_; }
/// Clear the parsed results (mostly for testing)
void clear() {
results_.clear();
current_option_state_ = option_state::parsing;
}
///@}
/// @name Setting options
///@{
/// Set the number of expected arguments
Option *expected(int value);
/// Set the range of expected arguments
Option *expected(int value_min, int value_max);
/// Set the value of allow_extra_args which allows extra value arguments on the flag or option to be included
/// with each instance
Option *allow_extra_args(bool value = true) {
allow_extra_args_ = value;
return this;
}
/// Get the current value of allow extra args
CLI11_NODISCARD bool get_allow_extra_args() const { return allow_extra_args_; }
/// Set the value of trigger_on_parse which specifies that the option callback should be triggered on every parse
Option *trigger_on_parse(bool value = true) {
trigger_on_result_ = value;
return this;
}
/// The status of trigger on parse
CLI11_NODISCARD bool get_trigger_on_parse() const { return trigger_on_result_; }
/// Set the value of force_callback
Option *force_callback(bool value = true) {
force_callback_ = value;
return this;
}
/// The status of force_callback
CLI11_NODISCARD bool get_force_callback() const { return force_callback_; }
/// Set the value of run_callback_for_default which controls whether the callback function should be called to set
/// the default This is controlled automatically but could be manipulated by the user.
Option *run_callback_for_default(bool value = true) {
run_callback_for_default_ = value;
return this;
}
/// Get the current value of run_callback_for_default
CLI11_NODISCARD bool get_run_callback_for_default() const { return run_callback_for_default_; }
/// Adds a Validator with a built in type name
Option *check(Validator validator, const std::string &validator_name = "");
/// Adds a Validator. Takes a const string& and returns an error message (empty if conversion/check is okay).
Option *check(std::function<std::string(const std::string &)> Validator,
std::string Validator_description = "",
std::string Validator_name = "");
/// Adds a transforming Validator with a built in type name
Option *transform(Validator Validator, const std::string &Validator_name = "");
/// Adds a Validator-like function that can change result
Option *transform(const std::function<std::string(std::string)> &func,
std::string transform_description = "",
std::string transform_name = "");
/// Adds a user supplied function to run on each item passed in (communicate though lambda capture)
Option *each(const std::function<void(std::string)> &func);
/// Get a named Validator
Validator *get_validator(const std::string &Validator_name = "");
/// Get a Validator by index NOTE: this may not be the order of definition
Validator *get_validator(int index);
/// Sets required options
Option *needs(Option *opt) {
if(opt != this) {
needs_.insert(opt);
}
return this;
}
/// Can find a string if needed
template <typename T = App> Option *needs(std::string opt_name) {
auto opt = static_cast<T *>(parent_)->get_option_no_throw(opt_name);
if(opt == nullptr) {
throw IncorrectConstruction::MissingOption(opt_name);
}
return needs(opt);
}
/// Any number supported, any mix of string and Opt
template <typename A, typename B, typename... ARG> Option *needs(A opt, B opt1, ARG... args) {
needs(opt);
return needs(opt1, args...); // NOLINT(readability-suspicious-call-argument)
}
/// Remove needs link from an option. Returns true if the option really was in the needs list.
bool remove_needs(Option *opt);
/// Sets excluded options
Option *excludes(Option *opt);
/// Can find a string if needed
template <typename T = App> Option *excludes(std::string opt_name) {
auto opt = static_cast<T *>(parent_)->get_option_no_throw(opt_name);
if(opt == nullptr) {
throw IncorrectConstruction::MissingOption(opt_name);
}
return excludes(opt);
}
/// Any number supported, any mix of string and Opt
template <typename A, typename B, typename... ARG> Option *excludes(A opt, B opt1, ARG... args) {
excludes(opt);
return excludes(opt1, args...);
}
/// Remove needs link from an option. Returns true if the option really was in the needs list.
bool remove_excludes(Option *opt);
/// Sets environment variable to read if no option given
Option *envname(std::string name) {
envname_ = std::move(name);
return this;
}
/// Ignore case
///
/// The template hides the fact that we don't have the definition of App yet.
/// You are never expected to add an argument to the template here.
template <typename T = App> Option *ignore_case(bool value = true);
/// Ignore underscores in the option names
///
/// The template hides the fact that we don't have the definition of App yet.
/// You are never expected to add an argument to the template here.
template <typename T = App> Option *ignore_underscore(bool value = true);
/// Take the last argument if given multiple times (or another policy)
Option *multi_option_policy(MultiOptionPolicy value = MultiOptionPolicy::Throw);
/// Disable flag overrides values, e.g. --flag=<value> is not allowed
Option *disable_flag_override(bool value = true) {
disable_flag_override_ = value;
return this;
}
///@}
/// @name Accessors
///@{
/// The number of arguments the option expects
CLI11_NODISCARD int get_type_size() const { return type_size_min_; }
/// The minimum number of arguments the option expects
CLI11_NODISCARD int get_type_size_min() const { return type_size_min_; }
/// The maximum number of arguments the option expects
CLI11_NODISCARD int get_type_size_max() const { return type_size_max_; }
/// Return the inject_separator flag
CLI11_NODISCARD bool get_inject_separator() const { return inject_separator_; }
/// The environment variable associated to this value
CLI11_NODISCARD std::string get_envname() const { return envname_; }
/// The set of options needed
CLI11_NODISCARD std::set<Option *> get_needs() const { return needs_; }
/// The set of options excluded
CLI11_NODISCARD std::set<Option *> get_excludes() const { return excludes_; }
/// The default value (for help printing)
CLI11_NODISCARD std::string get_default_str() const { return default_str_; }
/// Get the callback function
CLI11_NODISCARD callback_t get_callback() const { return callback_; }
/// Get the long names
CLI11_NODISCARD const std::vector<std::string> &get_lnames() const { return lnames_; }
/// Get the short names
CLI11_NODISCARD const std::vector<std::string> &get_snames() const { return snames_; }
/// Get the flag names with specified default values
CLI11_NODISCARD const std::vector<std::string> &get_fnames() const { return fnames_; }
/// Get a single name for the option, first of lname, pname, sname, envname
CLI11_NODISCARD const std::string &get_single_name() const {
if(!lnames_.empty()) {
return lnames_[0];
}
if(!snames_.empty()) {
return snames_[0];
}
if(!pname_.empty()) {
return pname_;
}
return envname_;
}
/// The number of times the option expects to be included
CLI11_NODISCARD int get_expected() const { return expected_min_; }
/// The number of times the option expects to be included
CLI11_NODISCARD int get_expected_min() const { return expected_min_; }
/// The max number of times the option expects to be included
CLI11_NODISCARD int get_expected_max() const { return expected_max_; }
/// The total min number of expected string values to be used
CLI11_NODISCARD int get_items_expected_min() const { return type_size_min_ * expected_min_; }
/// Get the maximum number of items expected to be returned and used for the callback
CLI11_NODISCARD int get_items_expected_max() const {
int t = type_size_max_;
return detail::checked_multiply(t, expected_max_) ? t : detail::expected_max_vector_size;
}
/// The total min number of expected string values to be used
CLI11_NODISCARD int get_items_expected() const { return get_items_expected_min(); }
/// True if the argument can be given directly
CLI11_NODISCARD bool get_positional() const { return !pname_.empty(); }
/// True if option has at least one non-positional name
CLI11_NODISCARD bool nonpositional() const { return (!lnames_.empty() || !snames_.empty()); }
/// True if option has description
CLI11_NODISCARD bool has_description() const { return !description_.empty(); }
/// Get the description
CLI11_NODISCARD const std::string &get_description() const { return description_; }
/// Set the description
Option *description(std::string option_description) {
description_ = std::move(option_description);
return this;
}
Option *option_text(std::string text) {
option_text_ = std::move(text);
return this;
}
CLI11_NODISCARD const std::string &get_option_text() const { return option_text_; }
///@}
/// @name Help tools
///@{
/// \brief Gets a comma separated list of names.
/// Will include / prefer the positional name if positional is true.
/// If all_options is false, pick just the most descriptive name to show.
/// Use `get_name(true)` to get the positional name (replaces `get_pname`)
CLI11_NODISCARD std::string get_name(bool positional = false, ///< Show the positional name
bool all_options = false ///< Show every option
) const;
///@}
/// @name Parser tools
///@{
/// Process the callback
void run_callback();
/// If options share any of the same names, find it
CLI11_NODISCARD const std::string &matching_name(const Option &other) const;
/// If options share any of the same names, they are equal (not counting positional)
bool operator==(const Option &other) const { return !matching_name(other).empty(); }
/// Check a name. Requires "-" or "--" for short / long, supports positional name
CLI11_NODISCARD bool check_name(const std::string &name) const;
/// Requires "-" to be removed from string
CLI11_NODISCARD bool check_sname(std::string name) const {
return (detail::find_member(std::move(name), snames_, ignore_case_) >= 0);
}
/// Requires "--" to be removed from string
CLI11_NODISCARD bool check_lname(std::string name) const {
return (detail::find_member(std::move(name), lnames_, ignore_case_, ignore_underscore_) >= 0);
}
/// Requires "--" to be removed from string
CLI11_NODISCARD bool check_fname(std::string name) const {
if(fnames_.empty()) {
return false;
}
return (detail::find_member(std::move(name), fnames_, ignore_case_, ignore_underscore_) >= 0);
}
/// Get the value that goes for a flag, nominally gets the default value but allows for overrides if not
/// disabled
CLI11_NODISCARD std::string get_flag_value(const std::string &name, std::string input_value) const;
/// Puts a result at the end
Option *add_result(std::string s);
/// Puts a result at the end and get a count of the number of arguments actually added
Option *add_result(std::string s, int &results_added);
/// Puts a result at the end
Option *add_result(std::vector<std::string> s);
/// Get the current complete results set
CLI11_NODISCARD const results_t &results() const { return results_; }
/// Get a copy of the results
CLI11_NODISCARD results_t reduced_results() const;
/// Get the results as a specified type
template <typename T> void results(T &output) const {
bool retval = false;
if(current_option_state_ >= option_state::reduced || (results_.size() == 1 && validators_.empty())) {
const results_t &res = (proc_results_.empty()) ? results_ : proc_results_;
retval = detail::lexical_conversion<T, T>(res, output);
} else {
results_t res;
if(results_.empty()) {
if(!default_str_.empty()) {
// _add_results takes an rvalue only
_add_result(std::string(default_str_), res);
_validate_results(res);
results_t extra;
_reduce_results(extra, res);
if(!extra.empty()) {
res = std::move(extra);
}
} else {
res.emplace_back();
}
} else {
res = reduced_results();
}
retval = detail::lexical_conversion<T, T>(res, output);
}
if(!retval) {
throw ConversionError(get_name(), results_);
}
}
/// Return the results as the specified type
template <typename T> CLI11_NODISCARD T as() const {
T output;
results(output);
return output;
}
/// See if the callback has been run already
CLI11_NODISCARD bool get_callback_run() const { return (current_option_state_ == option_state::callback_run); }
///@}
/// @name Custom options
///@{
/// Set the type function to run when displayed on this option
Option *type_name_fn(std::function<std::string()> typefun) {
type_name_ = std::move(typefun);
return this;
}
/// Set a custom option typestring
Option *type_name(std::string typeval) {
type_name_fn([typeval]() { return typeval; });
return this;
}
/// Set a custom option size
Option *type_size(int option_type_size);
/// Set a custom option type size range
Option *type_size(int option_type_size_min, int option_type_size_max);
/// Set the value of the separator injection flag
void inject_separator(bool value = true) { inject_separator_ = value; }
/// Set a capture function for the default. Mostly used by App.
Option *default_function(const std::function<std::string()> &func) {
default_function_ = func;
return this;
}
/// Capture the default value from the original value (if it can be captured)
Option *capture_default_str() {
if(default_function_) {
default_str_ = default_function_();
}
return this;
}
/// Set the default value string representation (does not change the contained value)
Option *default_str(std::string val) {
default_str_ = std::move(val);
return this;
}
/// Set the default value and validate the results and run the callback if appropriate to set the value into the
/// bound value only available for types that can be converted to a string
template <typename X> Option *default_val(const X &val) {
std::string val_str = detail::to_string(val);
auto old_option_state = current_option_state_;
results_t old_results{std::move(results_)};
results_.clear();
try {
add_result(val_str);
// if trigger_on_result_ is set the callback already ran
if(run_callback_for_default_ && !trigger_on_result_) {
run_callback(); // run callback sets the state, we need to reset it again
current_option_state_ = option_state::parsing;
} else {
_validate_results(results_);
current_option_state_ = old_option_state;
}
} catch(const CLI::Error &) {
// this should be done
results_ = std::move(old_results);
current_option_state_ = old_option_state;
throw;
}
results_ = std::move(old_results);
default_str_ = std::move(val_str);
return this;
}
/// Get the full typename for this option
CLI11_NODISCARD std::string get_type_name() const;
private:
/// Run the results through the Validators
void _validate_results(results_t &res) const;
/** reduce the results in accordance with the MultiOptionPolicy
@param[out] out results are assigned to res if there if they are different
*/
void _reduce_results(results_t &out, const results_t &original) const;
// Run a result through the Validators
std::string _validate(std::string &result, int index) const;
/// Add a single result to the result set, taking into account delimiters
int _add_result(std::string &&result, std::vector<std::string> &res) const;
};
template <typename CRTP> template <typename T> void OptionBase<CRTP>::copy_to(T *other) const {
other->group(group_);
other->required(required_);
other->ignore_case(ignore_case_);
other->ignore_underscore(ignore_underscore_);
other->configurable(configurable_);
other->disable_flag_override(disable_flag_override_);
other->delimiter(delimiter_);
other->always_capture_default(always_capture_default_);
other->multi_option_policy(multi_option_policy_);
}
CLI11_INLINE Option *Option::expected(int value) {
if(value < 0) {
expected_min_ = -value;
if(expected_max_ < expected_min_) {
expected_max_ = expected_min_;
}
allow_extra_args_ = true;
flag_like_ = false;
} else if(value == detail::expected_max_vector_size) {
expected_min_ = 1;
expected_max_ = detail::expected_max_vector_size;
allow_extra_args_ = true;
flag_like_ = false;
} else {
expected_min_ = value;
expected_max_ = value;
flag_like_ = (expected_min_ == 0);
}
return this;
}
CLI11_INLINE Option *Option::expected(int value_min, int value_max) {
if(value_min < 0) {
value_min = -value_min;
}
if(value_max < 0) {
value_max = detail::expected_max_vector_size;
}
if(value_max < value_min) {
expected_min_ = value_max;
expected_max_ = value_min;
} else {
expected_max_ = value_max;
expected_min_ = value_min;
}
return this;
}
CLI11_INLINE Option *Option::check(Validator validator, const std::string &validator_name) {
validator.non_modifying();
validators_.push_back(std::move(validator));
if(!validator_name.empty())
validators_.back().name(validator_name);
return this;
}
CLI11_INLINE Option *Option::check(std::function<std::string(const std::string &)> Validator,
std::string Validator_description,
std::string Validator_name) {
validators_.emplace_back(Validator, std::move(Validator_description), std::move(Validator_name));
validators_.back().non_modifying();
return this;
}
CLI11_INLINE Option *Option::transform(Validator Validator, const std::string &Validator_name) {
validators_.insert(validators_.begin(), std::move(Validator));
if(!Validator_name.empty())
validators_.front().name(Validator_name);
return this;
}
CLI11_INLINE Option *Option::transform(const std::function<std::string(std::string)> &func,
std::string transform_description,
std::string transform_name) {
validators_.insert(validators_.begin(),
Validator(
[func](std::string &val) {
val = func(val);
return std::string{};
},
std::move(transform_description),
std::move(transform_name)));
return this;
}
CLI11_INLINE Option *Option::each(const std::function<void(std::string)> &func) {
validators_.emplace_back(
[func](std::string &inout) {
func(inout);
return std::string{};
},
std::string{});
return this;
}
CLI11_INLINE Validator *Option::get_validator(const std::string &Validator_name) {
for(auto &Validator : validators_) {
if(Validator_name == Validator.get_name()) {
return &Validator;
}
}
if((Validator_name.empty()) && (!validators_.empty())) {
return &(validators_.front());
}
throw OptionNotFound(std::string{"Validator "} + Validator_name + " Not Found");
}
CLI11_INLINE Validator *Option::get_validator(int index) {
// This is an signed int so that it is not equivalent to a pointer.
if(index >= 0 && index < static_cast<int>(validators_.size())) {
return &(validators_[static_cast<decltype(validators_)::size_type>(index)]);
}
throw OptionNotFound("Validator index is not valid");
}
CLI11_INLINE bool Option::remove_needs(Option *opt) {
auto iterator = std::find(std::begin(needs_), std::end(needs_), opt);
if(iterator == std::end(needs_)) {
return false;
}
needs_.erase(iterator);
return true;
}
CLI11_INLINE Option *Option::excludes(Option *opt) {
if(opt == this) {
throw(IncorrectConstruction("and option cannot exclude itself"));
}
excludes_.insert(opt);
// Help text should be symmetric - excluding a should exclude b
opt->excludes_.insert(this);
// Ignoring the insert return value, excluding twice is now allowed.
// (Mostly to allow both directions to be excluded by user, even though the library does it for you.)
return this;
}
CLI11_INLINE bool Option::remove_excludes(Option *opt) {
auto iterator = std::find(std::begin(excludes_), std::end(excludes_), opt);
if(iterator == std::end(excludes_)) {
return false;
}
excludes_.erase(iterator);
return true;
}
template <typename T> Option *Option::ignore_case(bool value) {
if(!ignore_case_ && value) {
ignore_case_ = value;
auto *parent = static_cast<T *>(parent_);
for(const Option_p &opt : parent->options_) {
if(opt.get() == this) {
continue;
}
const auto &omatch = opt->matching_name(*this);
if(!omatch.empty()) {
ignore_case_ = false;
throw OptionAlreadyAdded("adding ignore case caused a name conflict with " + omatch);
}
}
} else {
ignore_case_ = value;
}
return this;
}
template <typename T> Option *Option::ignore_underscore(bool value) {
if(!ignore_underscore_ && value) {
ignore_underscore_ = value;
auto *parent = static_cast<T *>(parent_);
for(const Option_p &opt : parent->options_) {
if(opt.get() == this) {
continue;
}
const auto &omatch = opt->matching_name(*this);
if(!omatch.empty()) {
ignore_underscore_ = false;
throw OptionAlreadyAdded("adding ignore underscore caused a name conflict with " + omatch);
}
}
} else {
ignore_underscore_ = value;
}
return this;
}
CLI11_INLINE Option *Option::multi_option_policy(MultiOptionPolicy value) {
if(value != multi_option_policy_) {
if(multi_option_policy_ == MultiOptionPolicy::Throw && expected_max_ == detail::expected_max_vector_size &&
expected_min_ > 1) { // this bizarre condition is to maintain backwards compatibility
// with the previous behavior of expected_ with vectors
expected_max_ = expected_min_;
}
multi_option_policy_ = value;
current_option_state_ = option_state::parsing;
}
return this;
}
CLI11_NODISCARD CLI11_INLINE std::string Option::get_name(bool positional, bool all_options) const {
if(get_group().empty())
return {}; // Hidden
if(all_options) {
std::vector<std::string> name_list;
/// The all list will never include a positional unless asked or that's the only name.
if((positional && (!pname_.empty())) || (snames_.empty() && lnames_.empty())) {
name_list.push_back(pname_);
}
if((get_items_expected() == 0) && (!fnames_.empty())) {
for(const std::string &sname : snames_) {
name_list.push_back("-" + sname);
if(check_fname(sname)) {
name_list.back() += "{" + get_flag_value(sname, "") + "}";
}
}
for(const std::string &lname : lnames_) {
name_list.push_back("--" + lname);
if(check_fname(lname)) {
name_list.back() += "{" + get_flag_value(lname, "") + "}";
}
}
} else {
for(const std::string &sname : snames_)
name_list.push_back("-" + sname);
for(const std::string &lname : lnames_)
name_list.push_back("--" + lname);
}
return detail::join(name_list);
}
// This returns the positional name no matter what
if(positional)
return pname_;
// Prefer long name
if(!lnames_.empty())
return std::string(2, '-') + lnames_[0];
// Or short name if no long name
if(!snames_.empty())
return std::string(1, '-') + snames_[0];
// If positional is the only name, it's okay to use that
return pname_;
}
CLI11_INLINE void Option::run_callback() {
if(force_callback_ && results_.empty()) {
add_result(default_str_);
}
if(current_option_state_ == option_state::parsing) {
_validate_results(results_);
current_option_state_ = option_state::validated;
}
if(current_option_state_ < option_state::reduced) {
_reduce_results(proc_results_, results_);
current_option_state_ = option_state::reduced;
}
if(current_option_state_ >= option_state::reduced) {
current_option_state_ = option_state::callback_run;
if(!(callback_)) {
return;
}
const results_t &send_results = proc_results_.empty() ? results_ : proc_results_;
bool local_result = callback_(send_results);
if(!local_result)
throw ConversionError(get_name(), results_);
}
}
CLI11_NODISCARD CLI11_INLINE const std::string &Option::matching_name(const Option &other) const {
static const std::string estring;
for(const std::string &sname : snames_) {
if(other.check_sname(sname))
return sname;
if(other.check_lname(sname))
return sname;
}
for(const std::string &lname : lnames_) {
if(other.check_lname(lname))
return lname;
if(lname.size() == 1) {
if(other.check_sname(lname)) {
return lname;
}
}
}
if(snames_.empty() && lnames_.empty() && !pname_.empty()) {
if(other.check_sname(pname_) || other.check_lname(pname_) || pname_ == other.pname_)
return pname_;
}
if(other.snames_.empty() && other.fnames_.empty() && !other.pname_.empty()) {
if(check_sname(other.pname_) || check_lname(other.pname_) || (pname_ == other.pname_))
return other.pname_;
}
if(ignore_case_ ||
ignore_underscore_) { // We need to do the inverse, in case we are ignore_case or ignore underscore
for(const std::string &sname : other.snames_)
if(check_sname(sname))
return sname;
for(const std::string &lname : other.lnames_)
if(check_lname(lname))
return lname;
}
return estring;
}
CLI11_NODISCARD CLI11_INLINE bool Option::check_name(const std::string &name) const {
if(name.length() > 2 && name[0] == '-' && name[1] == '-')
return check_lname(name.substr(2));
if(name.length() > 1 && name.front() == '-')
return check_sname(name.substr(1));
if(!pname_.empty()) {
std::string local_pname = pname_;
std::string local_name = name;
if(ignore_underscore_) {
local_pname = detail::remove_underscore(local_pname);
local_name = detail::remove_underscore(local_name);
}
if(ignore_case_) {
local_pname = detail::to_lower(local_pname);
local_name = detail::to_lower(local_name);
}
if(local_name == local_pname) {
return true;
}
}
if(!envname_.empty()) {
// this needs to be the original since envname_ shouldn't match on case insensitivity
return (name == envname_);
}
return false;
}
CLI11_NODISCARD CLI11_INLINE std::string Option::get_flag_value(const std::string &name,
std::string input_value) const {
static const std::string trueString{"true"};
static const std::string falseString{"false"};
static const std::string emptyString{"{}"};
// check for disable flag override_
if(disable_flag_override_) {
if(!((input_value.empty()) || (input_value == emptyString))) {
auto default_ind = detail::find_member(name, fnames_, ignore_case_, ignore_underscore_);
if(default_ind >= 0) {
// We can static cast this to std::size_t because it is more than 0 in this block
if(default_flag_values_[static_cast<std::size_t>(default_ind)].second != input_value) {
if(input_value == default_str_ && force_callback_) {
return input_value;
}
throw(ArgumentMismatch::FlagOverride(name));
}
} else {
if(input_value != trueString) {
throw(ArgumentMismatch::FlagOverride(name));
}
}
}
}
auto ind = detail::find_member(name, fnames_, ignore_case_, ignore_underscore_);
if((input_value.empty()) || (input_value == emptyString)) {
if(flag_like_) {
return (ind < 0) ? trueString : default_flag_values_[static_cast<std::size_t>(ind)].second;
}
return (ind < 0) ? default_str_ : default_flag_values_[static_cast<std::size_t>(ind)].second;
}
if(ind < 0) {
return input_value;
}
if(default_flag_values_[static_cast<std::size_t>(ind)].second == falseString) {
errno = 0;
auto val = detail::to_flag_value(input_value);
if(errno != 0) {
errno = 0;
return input_value;
}
return (val == 1) ? falseString : (val == (-1) ? trueString : std::to_string(-val));
}
return input_value;
}
CLI11_INLINE Option *Option::add_result(std::string s) {
_add_result(std::move(s), results_);
current_option_state_ = option_state::parsing;
return this;
}
CLI11_INLINE Option *Option::add_result(std::string s, int &results_added) {
results_added = _add_result(std::move(s), results_);
current_option_state_ = option_state::parsing;
return this;
}
CLI11_INLINE Option *Option::add_result(std::vector<std::string> s) {
current_option_state_ = option_state::parsing;
for(auto &str : s) {
_add_result(std::move(str), results_);
}
return this;
}
CLI11_NODISCARD CLI11_INLINE results_t Option::reduced_results() const {
results_t res = proc_results_.empty() ? results_ : proc_results_;
if(current_option_state_ < option_state::reduced) {
if(current_option_state_ == option_state::parsing) {
res = results_;
_validate_results(res);
}
if(!res.empty()) {
results_t extra;
_reduce_results(extra, res);
if(!extra.empty()) {
res = std::move(extra);
}
}
}
return res;
}
CLI11_INLINE Option *Option::type_size(int option_type_size) {
if(option_type_size < 0) {
// this section is included for backwards compatibility
type_size_max_ = -option_type_size;
type_size_min_ = -option_type_size;
expected_max_ = detail::expected_max_vector_size;
} else {
type_size_max_ = option_type_size;
if(type_size_max_ < detail::expected_max_vector_size) {
type_size_min_ = option_type_size;
} else {
inject_separator_ = true;
}
if(type_size_max_ == 0)
required_ = false;
}
return this;
}
CLI11_INLINE Option *Option::type_size(int option_type_size_min, int option_type_size_max) {
if(option_type_size_min < 0 || option_type_size_max < 0) {
// this section is included for backwards compatibility
expected_max_ = detail::expected_max_vector_size;
option_type_size_min = (std::abs)(option_type_size_min);
option_type_size_max = (std::abs)(option_type_size_max);
}
if(option_type_size_min > option_type_size_max) {
type_size_max_ = option_type_size_min;
type_size_min_ = option_type_size_max;
} else {
type_size_min_ = option_type_size_min;
type_size_max_ = option_type_size_max;
}
if(type_size_max_ == 0) {
required_ = false;
}
if(type_size_max_ >= detail::expected_max_vector_size) {
inject_separator_ = true;
}
return this;
}
CLI11_NODISCARD CLI11_INLINE std::string Option::get_type_name() const {
std::string full_type_name = type_name_();
if(!validators_.empty()) {
for(const auto &Validator : validators_) {
std::string vtype = Validator.get_description();
if(!vtype.empty()) {
full_type_name += ":" + vtype;
}
}
}
return full_type_name;
}
CLI11_INLINE void Option::_validate_results(results_t &res) const {
// Run the Validators (can change the string)
if(!validators_.empty()) {
if(type_size_max_ > 1) { // in this context index refers to the index in the type
int index = 0;
if(get_items_expected_max() < static_cast<int>(res.size()) &&
(multi_option_policy_ == CLI::MultiOptionPolicy::TakeLast ||
multi_option_policy_ == CLI::MultiOptionPolicy::Reverse)) {
// create a negative index for the earliest ones
index = get_items_expected_max() - static_cast<int>(res.size());
}
for(std::string &result : res) {
if(detail::is_separator(result) && type_size_max_ != type_size_min_ && index >= 0) {
index = 0; // reset index for variable size chunks
continue;
}
auto err_msg = _validate(result, (index >= 0) ? (index % type_size_max_) : index);
if(!err_msg.empty())
throw ValidationError(get_name(), err_msg);
++index;
}
} else {
int index = 0;
if(expected_max_ < static_cast<int>(res.size()) &&
(multi_option_policy_ == CLI::MultiOptionPolicy::TakeLast ||
multi_option_policy_ == CLI::MultiOptionPolicy::Reverse)) {
// create a negative index for the earliest ones
index = expected_max_ - static_cast<int>(res.size());
}
for(std::string &result : res) {
auto err_msg = _validate(result, index);
++index;
if(!err_msg.empty())
throw ValidationError(get_name(), err_msg);
}
}
}
}
CLI11_INLINE void Option::_reduce_results(results_t &out, const results_t &original) const {
// max num items expected or length of vector, always at least 1
// Only valid for a trimming policy
out.clear();
// Operation depends on the policy setting
switch(multi_option_policy_) {
case MultiOptionPolicy::TakeAll:
break;
case MultiOptionPolicy::TakeLast: {
// Allow multi-option sizes (including 0)
std::size_t trim_size = std::min<std::size_t>(
static_cast<std::size_t>(std::max<int>(get_items_expected_max(), 1)), original.size());
if(original.size() != trim_size) {
out.assign(original.end() - static_cast<results_t::difference_type>(trim_size), original.end());
}
} break;
case MultiOptionPolicy::Reverse: {
// Allow multi-option sizes (including 0)
std::size_t trim_size = std::min<std::size_t>(
static_cast<std::size_t>(std::max<int>(get_items_expected_max(), 1)), original.size());
if(original.size() != trim_size || trim_size > 1) {
out.assign(original.end() - static_cast<results_t::difference_type>(trim_size), original.end());
}
std::reverse(out.begin(), out.end());
} break;
case MultiOptionPolicy::TakeFirst: {
std::size_t trim_size = std::min<std::size_t>(
static_cast<std::size_t>(std::max<int>(get_items_expected_max(), 1)), original.size());
if(original.size() != trim_size) {
out.assign(original.begin(), original.begin() + static_cast<results_t::difference_type>(trim_size));
}
} break;
case MultiOptionPolicy::Join:
if(results_.size() > 1) {
out.push_back(detail::join(original, std::string(1, (delimiter_ == '\0') ? '\n' : delimiter_)));
}
break;
case MultiOptionPolicy::Sum:
out.push_back(detail::sum_string_vector(original));
break;
case MultiOptionPolicy::Throw:
default: {
auto num_min = static_cast<std::size_t>(get_items_expected_min());
auto num_max = static_cast<std::size_t>(get_items_expected_max());
if(num_min == 0) {
num_min = 1;
}
if(num_max == 0) {
num_max = 1;
}
if(original.size() < num_min) {
throw ArgumentMismatch::AtLeast(get_name(), static_cast<int>(num_min), original.size());
}
if(original.size() > num_max) {
if(original.size() == 2 && num_max == 1 && original[1] == "%%" && original[0] == "{}") {
// this condition is a trap for the following empty indicator check on config files
out = original;
} else {
throw ArgumentMismatch::AtMost(get_name(), static_cast<int>(num_max), original.size());
}
}
break;
}
}
// this check is to allow an empty vector in certain circumstances but not if expected is not zero.
// {} is the indicator for an empty container
if(out.empty()) {
if(original.size() == 1 && original[0] == "{}" && get_items_expected_min() > 0) {
out.emplace_back("{}");
out.emplace_back("%%");
}
} else if(out.size() == 1 && out[0] == "{}" && get_items_expected_min() > 0) {
out.emplace_back("%%");
}
}
CLI11_INLINE std::string Option::_validate(std::string &result, int index) const {
std::string err_msg;
if(result.empty() && expected_min_ == 0) {
// an empty with nothing expected is allowed
return err_msg;
}
for(const auto &vali : validators_) {
auto v = vali.get_application_index();
if(v == -1 || v == index) {
try {
err_msg = vali(result);
} catch(const ValidationError &err) {
err_msg = err.what();
}
if(!err_msg.empty())
break;
}
}
return err_msg;
}
CLI11_INLINE int Option::_add_result(std::string &&result, std::vector<std::string> &res) const {
int result_count = 0;
if(allow_extra_args_ && !result.empty() && result.front() == '[' &&
result.back() == ']') { // this is now a vector string likely from the default or user entry
result.pop_back();
for(auto &var : CLI::detail::split(result.substr(1), ',')) {
if(!var.empty()) {
result_count += _add_result(std::move(var), res);
}
}
return result_count;
}
if(delimiter_ == '\0') {
res.push_back(std::move(result));
++result_count;
} else {
if((result.find_first_of(delimiter_) != std::string::npos)) {
for(const auto &var : CLI::detail::split(result, delimiter_)) {
if(!var.empty()) {
res.push_back(var);
++result_count;
}
}
} else {
res.push_back(std::move(result));
++result_count;
}
}
return result_count;
}
#ifndef CLI11_PARSE
#define CLI11_PARSE(app, ...) \
try { \
(app).parse(__VA_ARGS__); \
} catch(const CLI::ParseError &e) { \
return (app).exit(e); \
}
#endif
namespace detail {
enum class Classifier { NONE, POSITIONAL_MARK, SHORT, LONG, WINDOWS_STYLE, SUBCOMMAND, SUBCOMMAND_TERMINATOR };
struct AppFriend;
} // namespace detail
namespace FailureMessage {
/// Printout a clean, simple message on error (the default in CLI11 1.5+)
CLI11_INLINE std::string simple(const App *app, const Error &e);
/// Printout the full help string on error (if this fn is set, the old default for CLI11)
CLI11_INLINE std::string help(const App *app, const Error &e);
} // namespace FailureMessage
/// enumeration of modes of how to deal with extras in config files
enum class config_extras_mode : char { error = 0, ignore, ignore_all, capture };
class App;
using App_p = std::shared_ptr<App>;
namespace detail {
/// helper functions for adding in appropriate flag modifiers for add_flag
template <typename T, enable_if_t<!std::is_integral<T>::value || (sizeof(T) <= 1U), detail::enabler> = detail::dummy>
Option *default_flag_modifiers(Option *opt) {
return opt->always_capture_default();
}
/// summing modifiers
template <typename T, enable_if_t<std::is_integral<T>::value && (sizeof(T) > 1U), detail::enabler> = detail::dummy>
Option *default_flag_modifiers(Option *opt) {
return opt->multi_option_policy(MultiOptionPolicy::Sum)->default_str("0")->force_callback();
}
} // namespace detail
class Option_group;
/// Creates a command line program, with very few defaults.
/** To use, create a new `Program()` instance with `argc`, `argv`, and a help description. The templated
* add_option methods make it easy to prepare options. Remember to call `.start` before starting your
* program, so that the options can be evaluated and the help option doesn't accidentally run your program. */
class App {
friend Option;
friend detail::AppFriend;
protected:
// This library follows the Google style guide for member names ending in underscores
/// @name Basics
///@{
/// Subcommand name or program name (from parser if name is empty)
std::string name_{};
/// Description of the current program/subcommand
std::string description_{};
/// If true, allow extra arguments (ie, don't throw an error). INHERITABLE
bool allow_extras_{false};
/// If ignore, allow extra arguments in the ini file (ie, don't throw an error). INHERITABLE
/// if error error on an extra argument, and if capture feed it to the app
config_extras_mode allow_config_extras_{config_extras_mode::ignore};
/// If true, return immediately on an unrecognized option (implies allow_extras) INHERITABLE
bool prefix_command_{false};
/// If set to true the name was automatically generated from the command line vs a user set name
bool has_automatic_name_{false};
/// If set to true the subcommand is required to be processed and used, ignored for main app
bool required_{false};
/// If set to true the subcommand is disabled and cannot be used, ignored for main app
bool disabled_{false};
/// Flag indicating that the pre_parse_callback has been triggered
bool pre_parse_called_{false};
/// Flag indicating that the callback for the subcommand should be executed immediately on parse completion which is
/// before help or ini files are processed. INHERITABLE
bool immediate_callback_{false};
/// This is a function that runs prior to the start of parsing
std::function<void(std::size_t)> pre_parse_callback_{};
/// This is a function that runs when parsing has finished.
std::function<void()> parse_complete_callback_{};
/// This is a function that runs when all processing has completed
std::function<void()> final_callback_{};
///@}
/// @name Options
///@{
/// The default values for options, customizable and changeable INHERITABLE
OptionDefaults option_defaults_{};
/// The list of options, stored locally
std::vector<Option_p> options_{};
///@}
/// @name Help
///@{
/// Usage to put after program/subcommand description in the help output INHERITABLE
std::string usage_{};
/// This is a function that generates a usage to put after program/subcommand description in help output
std::function<std::string()> usage_callback_{};
/// Footer to put after all options in the help output INHERITABLE
std::string footer_{};
/// This is a function that generates a footer to put after all other options in help output
std::function<std::string()> footer_callback_{};
/// A pointer to the help flag if there is one INHERITABLE
Option *help_ptr_{nullptr};
/// A pointer to the help all flag if there is one INHERITABLE
Option *help_all_ptr_{nullptr};
/// A pointer to a version flag if there is one
Option *version_ptr_{nullptr};
/// This is the formatter for help printing. Default provided. INHERITABLE (same pointer)
std::shared_ptr<FormatterBase> formatter_{new Formatter()};
/// The error message printing function INHERITABLE
std::function<std::string(const App *, const Error &e)> failure_message_{FailureMessage::simple};
///@}
/// @name Parsing
///@{
using missing_t = std::vector<std::pair<detail::Classifier, std::string>>;
/// Pair of classifier, string for missing options. (extra detail is removed on returning from parse)
///
/// This is faster and cleaner than storing just a list of strings and reparsing. This may contain the -- separator.
missing_t missing_{};
/// This is a list of pointers to options with the original parse order
std::vector<Option *> parse_order_{};
/// This is a list of the subcommands collected, in order
std::vector<App *> parsed_subcommands_{};
/// this is a list of subcommands that are exclusionary to this one
std::set<App *> exclude_subcommands_{};
/// This is a list of options which are exclusionary to this App, if the options were used this subcommand should
/// not be
std::set<Option *> exclude_options_{};
/// this is a list of subcommands or option groups that are required by this one, the list is not mutual, the
/// listed subcommands do not require this one
std::set<App *> need_subcommands_{};
/// This is a list of options which are required by this app, the list is not mutual, listed options do not need the
/// subcommand not be
std::set<Option *> need_options_{};
///@}
/// @name Subcommands
///@{
/// Storage for subcommand list
std::vector<App_p> subcommands_{};
/// If true, the program name is not case sensitive INHERITABLE
bool ignore_case_{false};
/// If true, the program should ignore underscores INHERITABLE
bool ignore_underscore_{false};
/// Allow subcommand fallthrough, so that parent commands can collect commands after subcommand. INHERITABLE
bool fallthrough_{false};
/// Allow '/' for options for Windows like options. Defaults to true on Windows, false otherwise. INHERITABLE
bool allow_windows_style_options_{
#ifdef _WIN32
true
#else
false
#endif
};
/// specify that positional arguments come at the end of the argument sequence not inheritable
bool positionals_at_end_{false};
enum class startup_mode : char { stable, enabled, disabled };
/// specify the startup mode for the app
/// stable=no change, enabled= startup enabled, disabled=startup disabled
startup_mode default_startup{startup_mode::stable};
/// if set to true the subcommand can be triggered via configuration files INHERITABLE
bool configurable_{false};
/// If set to true positional options are validated before assigning INHERITABLE
bool validate_positionals_{false};
/// If set to true optional vector arguments are validated before assigning INHERITABLE
bool validate_optional_arguments_{false};
/// indicator that the subcommand is silent and won't show up in subcommands list
/// This is potentially useful as a modifier subcommand
bool silent_{false};
/// Counts the number of times this command/subcommand was parsed
std::uint32_t parsed_{0U};
/// Minimum required subcommands (not inheritable!)
std::size_t require_subcommand_min_{0};
/// Max number of subcommands allowed (parsing stops after this number). 0 is unlimited INHERITABLE
std::size_t require_subcommand_max_{0};
/// Minimum required options (not inheritable!)
std::size_t require_option_min_{0};
/// Max number of options allowed. 0 is unlimited (not inheritable)
std::size_t require_option_max_{0};
/// A pointer to the parent if this is a subcommand
App *parent_{nullptr};
/// The group membership INHERITABLE
std::string group_{"Subcommands"};
/// Alias names for the subcommand
std::vector<std::string> aliases_{};
///@}
/// @name Config
///@{
/// Pointer to the config option
Option *config_ptr_{nullptr};
/// This is the formatter for help printing. Default provided. INHERITABLE (same pointer)
std::shared_ptr<Config> config_formatter_{new ConfigTOML()};
///@}
#ifdef _WIN32
/// When normalizing argv to UTF-8 on Windows, this is the storage for normalized args.
std::vector<std::string> normalized_argv_{};
/// When normalizing argv to UTF-8 on Windows, this is the `char**` value returned to the user.
std::vector<char *> normalized_argv_view_{};
#endif
/// Special private constructor for subcommand
App(std::string app_description, std::string app_name, App *parent);
public:
/// @name Basic
///@{
/// Create a new program. Pass in the same arguments as main(), along with a help string.
explicit App(std::string app_description = "", std::string app_name = "")
: App(app_description, app_name, nullptr) {
set_help_flag("-h,--help", "Print this help message and exit");
}
App(const App &) = delete;
App &operator=(const App &) = delete;
/// virtual destructor
virtual ~App() = default;
/// Convert the contents of argv to UTF-8. Only does something on Windows, does nothing elsewhere.
CLI11_NODISCARD char **ensure_utf8(char **argv);
/// Set a callback for execution when all parsing and processing has completed
///
/// Due to a bug in c++11,
/// it is not possible to overload on std::function (fixed in c++14
/// and backported to c++11 on newer compilers). Use capture by reference
/// to get a pointer to App if needed.
App *callback(std::function<void()> app_callback) {
if(immediate_callback_) {
parse_complete_callback_ = std::move(app_callback);
} else {
final_callback_ = std::move(app_callback);
}
return this;
}
/// Set a callback for execution when all parsing and processing has completed
/// aliased as callback
App *final_callback(std::function<void()> app_callback) {
final_callback_ = std::move(app_callback);
return this;
}
/// Set a callback to execute when parsing has completed for the app
///
App *parse_complete_callback(std::function<void()> pc_callback) {
parse_complete_callback_ = std::move(pc_callback);
return this;
}
/// Set a callback to execute prior to parsing.
///
App *preparse_callback(std::function<void(std::size_t)> pp_callback) {
pre_parse_callback_ = std::move(pp_callback);
return this;
}
/// Set a name for the app (empty will use parser to set the name)
App *name(std::string app_name = "");
/// Set an alias for the app
App *alias(std::string app_name);
/// Remove the error when extras are left over on the command line.
App *allow_extras(bool allow = true) {
allow_extras_ = allow;
return this;
}
/// Remove the error when extras are left over on the command line.
App *required(bool require = true) {
required_ = require;
return this;
}
/// Disable the subcommand or option group
App *disabled(bool disable = true) {
disabled_ = disable;
return this;
}
/// silence the subcommand from showing up in the processed list
App *silent(bool silence = true) {
silent_ = silence;
return this;
}
/// Set the subcommand to be disabled by default, so on clear(), at the start of each parse it is disabled
App *disabled_by_default(bool disable = true) {
if(disable) {
default_startup = startup_mode::disabled;
} else {
default_startup = (default_startup == startup_mode::enabled) ? startup_mode::enabled : startup_mode::stable;
}
return this;
}
/// Set the subcommand to be enabled by default, so on clear(), at the start of each parse it is enabled (not
/// disabled)
App *enabled_by_default(bool enable = true) {
if(enable) {
default_startup = startup_mode::enabled;
} else {
default_startup =
(default_startup == startup_mode::disabled) ? startup_mode::disabled : startup_mode::stable;
}
return this;
}
/// Set the subcommand callback to be executed immediately on subcommand completion
App *immediate_callback(bool immediate = true);
/// Set the subcommand to validate positional arguments before assigning
App *validate_positionals(bool validate = true) {
validate_positionals_ = validate;
return this;
}
/// Set the subcommand to validate optional vector arguments before assigning
App *validate_optional_arguments(bool validate = true) {
validate_optional_arguments_ = validate;
return this;
}
/// ignore extras in config files
App *allow_config_extras(bool allow = true) {
if(allow) {
allow_config_extras_ = config_extras_mode::capture;
allow_extras_ = true;
} else {
allow_config_extras_ = config_extras_mode::error;
}
return this;
}
/// ignore extras in config files
App *allow_config_extras(config_extras_mode mode) {
allow_config_extras_ = mode;
return this;
}
/// Do not parse anything after the first unrecognized option and return
App *prefix_command(bool allow = true) {
prefix_command_ = allow;
return this;
}
/// Ignore case. Subcommands inherit value.
App *ignore_case(bool value = true);
/// Allow windows style options, such as `/opt`. First matching short or long name used. Subcommands inherit
/// value.
App *allow_windows_style_options(bool value = true) {
allow_windows_style_options_ = value;
return this;
}
/// Specify that the positional arguments are only at the end of the sequence
App *positionals_at_end(bool value = true) {
positionals_at_end_ = value;
return this;
}
/// Specify that the subcommand can be triggered by a config file
App *configurable(bool value = true) {
configurable_ = value;
return this;
}
/// Ignore underscore. Subcommands inherit value.
App *ignore_underscore(bool value = true);
/// Set the help formatter
App *formatter(std::shared_ptr<FormatterBase> fmt) {
formatter_ = fmt;
return this;
}
/// Set the help formatter
App *formatter_fn(std::function<std::string(const App *, std::string, AppFormatMode)> fmt) {
formatter_ = std::make_shared<FormatterLambda>(fmt);
return this;
}
/// Set the config formatter
App *config_formatter(std::shared_ptr<Config> fmt) {
config_formatter_ = fmt;
return this;
}
/// Check to see if this subcommand was parsed, true only if received on command line.
CLI11_NODISCARD bool parsed() const { return parsed_ > 0; }
/// Get the OptionDefault object, to set option defaults
OptionDefaults *option_defaults() { return &option_defaults_; }
///@}
/// @name Adding options
///@{
/// Add an option, will automatically understand the type for common types.
///
/// To use, create a variable with the expected type, and pass it in after the name.
/// After start is called, you can use count to see if the value was passed, and
/// the value will be initialized properly. Numbers, vectors, and strings are supported.
///
/// ->required(), ->default, and the validators are options,
/// The positional options take an optional number of arguments.
///
/// For example,
///
/// std::string filename;
/// program.add_option("filename", filename, "description of filename");
///
Option *add_option(std::string option_name,
callback_t option_callback,
std::string option_description = "",
bool defaulted = false,
std::function<std::string()> func = {});
/// Add option for assigning to a variable
template <typename AssignTo,
typename ConvertTo = AssignTo,
enable_if_t<!std::is_const<ConvertTo>::value, detail::enabler> = detail::dummy>
Option *add_option(std::string option_name,
AssignTo &variable, ///< The variable to set
std::string option_description = "") {
auto fun = [&variable](const CLI::results_t &res) { // comment for spacing
return detail::lexical_conversion<AssignTo, ConvertTo>(res, variable);
};
Option *opt = add_option(option_name, fun, option_description, false, [&variable]() {
return CLI::detail::checked_to_string<AssignTo, ConvertTo>(variable);
});
opt->type_name(detail::type_name<ConvertTo>());
// these must be actual lvalues since (std::max) sometimes is defined in terms of references and references
// to structs used in the evaluation can be temporary so that would cause issues.
auto Tcount = detail::type_count<AssignTo>::value;
auto XCcount = detail::type_count<ConvertTo>::value;
opt->type_size(detail::type_count_min<ConvertTo>::value, (std::max)(Tcount, XCcount));
opt->expected(detail::expected_count<ConvertTo>::value);
opt->run_callback_for_default();
return opt;
}
/// Add option for assigning to a variable
template <typename AssignTo, enable_if_t<!std::is_const<AssignTo>::value, detail::enabler> = detail::dummy>
Option *add_option_no_stream(std::string option_name,
AssignTo &variable, ///< The variable to set
std::string option_description = "") {
auto fun = [&variable](const CLI::results_t &res) { // comment for spacing
return detail::lexical_conversion<AssignTo, AssignTo>(res, variable);
};
Option *opt = add_option(option_name, fun, option_description, false, []() { return std::string{}; });
opt->type_name(detail::type_name<AssignTo>());
opt->type_size(detail::type_count_min<AssignTo>::value, detail::type_count<AssignTo>::value);
opt->expected(detail::expected_count<AssignTo>::value);
opt->run_callback_for_default();
return opt;
}
/// Add option for a callback of a specific type
template <typename ArgType>
Option *add_option_function(std::string option_name,
const std::function<void(const ArgType &)> &func, ///< the callback to execute
std::string option_description = "") {
auto fun = [func](const CLI::results_t &res) {
ArgType variable;
bool result = detail::lexical_conversion<ArgType, ArgType>(res, variable);
if(result) {
func(variable);
}
return result;
};
Option *opt = add_option(option_name, std::move(fun), option_description, false);
opt->type_name(detail::type_name<ArgType>());
opt->type_size(detail::type_count_min<ArgType>::value, detail::type_count<ArgType>::value);
opt->expected(detail::expected_count<ArgType>::value);
return opt;
}
/// Add option with no description or variable assignment
Option *add_option(std::string option_name) {
return add_option(option_name, CLI::callback_t{}, std::string{}, false);
}
/// Add option with description but with no variable assignment or callback
template <typename T,
enable_if_t<std::is_const<T>::value && std::is_constructible<std::string, T>::value, detail::enabler> =
detail::dummy>
Option *add_option(std::string option_name, T &option_description) {
return add_option(option_name, CLI::callback_t(), option_description, false);
}
/// Set a help flag, replace the existing one if present
Option *set_help_flag(std::string flag_name = "", const std::string &help_description = "");
/// Set a help all flag, replaced the existing one if present
Option *set_help_all_flag(std::string help_name = "", const std::string &help_description = "");
/// Set a version flag and version display string, replace the existing one if present
Option *set_version_flag(std::string flag_name = "",
const std::string &versionString = "",
const std::string &version_help = "Display program version information and exit");
/// Generate the version string through a callback function
Option *set_version_flag(std::string flag_name,
std::function<std::string()> vfunc,
const std::string &version_help = "Display program version information and exit");
private:
/// Internal function for adding a flag
Option *_add_flag_internal(std::string flag_name, CLI::callback_t fun, std::string flag_description);
public:
/// Add a flag with no description or variable assignment
Option *add_flag(std::string flag_name) { return _add_flag_internal(flag_name, CLI::callback_t(), std::string{}); }
/// Add flag with description but with no variable assignment or callback
/// takes a constant string, if a variable string is passed that variable will be assigned the results from the
/// flag
template <typename T,
enable_if_t<std::is_const<T>::value && std::is_constructible<std::string, T>::value, detail::enabler> =
detail::dummy>
Option *add_flag(std::string flag_name, T &flag_description) {
return _add_flag_internal(flag_name, CLI::callback_t(), flag_description);
}
/// Other type version accepts all other types that are not vectors such as bool, enum, string or other classes
/// that can be converted from a string
template <typename T,
enable_if_t<!detail::is_mutable_container<T>::value && !std::is_const<T>::value &&
!std::is_constructible<std::function<void(int)>, T>::value,
detail::enabler> = detail::dummy>
Option *add_flag(std::string flag_name,
T &flag_result, ///< A variable holding the flag result
std::string flag_description = "") {
CLI::callback_t fun = [&flag_result](const CLI::results_t &res) {
using CLI::detail::lexical_cast;
return lexical_cast(res[0], flag_result);
};
auto *opt = _add_flag_internal(flag_name, std::move(fun), std::move(flag_description));
return detail::default_flag_modifiers<T>(opt);
}
/// Vector version to capture multiple flags.
template <typename T,
enable_if_t<!std::is_assignable<std::function<void(std::int64_t)> &, T>::value, detail::enabler> =
detail::dummy>
Option *add_flag(std::string flag_name,
std::vector<T> &flag_results, ///< A vector of values with the flag results
std::string flag_description = "") {
CLI::callback_t fun = [&flag_results](const CLI::results_t &res) {
bool retval = true;
for(const auto &elem : res) {
using CLI::detail::lexical_cast;
flag_results.emplace_back();
retval &= lexical_cast(elem, flag_results.back());
}
return retval;
};
return _add_flag_internal(flag_name, std::move(fun), std::move(flag_description))
->multi_option_policy(MultiOptionPolicy::TakeAll)
->run_callback_for_default();
}
/// Add option for callback that is triggered with a true flag and takes no arguments
Option *add_flag_callback(std::string flag_name,
std::function<void(void)> function, ///< A function to call, void(void)
std::string flag_description = "");
/// Add option for callback with an integer value
Option *add_flag_function(std::string flag_name,
std::function<void(std::int64_t)> function, ///< A function to call, void(int)
std::string flag_description = "");
#ifdef CLI11_CPP14
/// Add option for callback (C++14 or better only)
Option *add_flag(std::string flag_name,
std::function<void(std::int64_t)> function, ///< A function to call, void(std::int64_t)
std::string flag_description = "") {
return add_flag_function(std::move(flag_name), std::move(function), std::move(flag_description));
}
#endif
/// Set a configuration ini file option, or clear it if no name passed
Option *set_config(std::string option_name = "",
std::string default_filename = "",
const std::string &help_message = "Read an ini file",
bool config_required = false);
/// Removes an option from the App. Takes an option pointer. Returns true if found and removed.
bool remove_option(Option *opt);
/// creates an option group as part of the given app
template <typename T = Option_group>
T *add_option_group(std::string group_name, std::string group_description = "") {
if(!detail::valid_alias_name_string(group_name)) {
throw IncorrectConstruction("option group names may not contain newlines or null characters");
}
auto option_group = std::make_shared<T>(std::move(group_description), group_name, this);
auto *ptr = option_group.get();
// move to App_p for overload resolution on older gcc versions
App_p app_ptr = std::dynamic_pointer_cast<App>(option_group);
add_subcommand(std::move(app_ptr));
return ptr;
}
///@}
/// @name Subcommands
///@{
/// Add a subcommand. Inherits INHERITABLE and OptionDefaults, and help flag
App *add_subcommand(std::string subcommand_name = "", std::string subcommand_description = "");
/// Add a previously created app as a subcommand
App *add_subcommand(CLI::App_p subcom);
/// Removes a subcommand from the App. Takes a subcommand pointer. Returns true if found and removed.
bool remove_subcommand(App *subcom);
/// Check to see if a subcommand is part of this command (doesn't have to be in command line)
/// returns the first subcommand if passed a nullptr
App *get_subcommand(const App *subcom) const;
/// Check to see if a subcommand is part of this command (text version)
CLI11_NODISCARD App *get_subcommand(std::string subcom) const;
/// Get a subcommand by name (noexcept non-const version)
/// returns null if subcommand doesn't exist
CLI11_NODISCARD App *get_subcommand_no_throw(std::string subcom) const noexcept;
/// Get a pointer to subcommand by index
CLI11_NODISCARD App *get_subcommand(int index = 0) const;
/// Check to see if a subcommand is part of this command and get a shared_ptr to it
CLI::App_p get_subcommand_ptr(App *subcom) const;
/// Check to see if a subcommand is part of this command (text version)
CLI11_NODISCARD CLI::App_p get_subcommand_ptr(std::string subcom) const;
/// Get an owning pointer to subcommand by index
CLI11_NODISCARD CLI::App_p get_subcommand_ptr(int index = 0) const;
/// Check to see if an option group is part of this App
CLI11_NODISCARD App *get_option_group(std::string group_name) const;
/// No argument version of count counts the number of times this subcommand was
/// passed in. The main app will return 1. Unnamed subcommands will also return 1 unless
/// otherwise modified in a callback
CLI11_NODISCARD std::size_t count() const { return parsed_; }
/// Get a count of all the arguments processed in options and subcommands, this excludes arguments which were
/// treated as extras.
CLI11_NODISCARD std::size_t count_all() const;
/// Changes the group membership
App *group(std::string group_name) {
group_ = group_name;
return this;
}
/// The argumentless form of require subcommand requires 1 or more subcommands
App *require_subcommand() {
require_subcommand_min_ = 1;
require_subcommand_max_ = 0;
return this;
}
/// Require a subcommand to be given (does not affect help call)
/// The number required can be given. Negative values indicate maximum
/// number allowed (0 for any number). Max number inheritable.
App *require_subcommand(int value) {
if(value < 0) {
require_subcommand_min_ = 0;
require_subcommand_max_ = static_cast<std::size_t>(-value);
} else {
require_subcommand_min_ = static_cast<std::size_t>(value);
require_subcommand_max_ = static_cast<std::size_t>(value);
}
return this;
}
/// Explicitly control the number of subcommands required. Setting 0
/// for the max means unlimited number allowed. Max number inheritable.
App *require_subcommand(std::size_t min, std::size_t max) {
require_subcommand_min_ = min;
require_subcommand_max_ = max;
return this;
}
/// The argumentless form of require option requires 1 or more options be used
App *require_option() {
require_option_min_ = 1;
require_option_max_ = 0;
return this;
}
/// Require an option to be given (does not affect help call)
/// The number required can be given. Negative values indicate maximum
/// number allowed (0 for any number).
App *require_option(int value) {
if(value < 0) {
require_option_min_ = 0;
require_option_max_ = static_cast<std::size_t>(-value);
} else {
require_option_min_ = static_cast<std::size_t>(value);
require_option_max_ = static_cast<std::size_t>(value);
}
return this;
}
/// Explicitly control the number of options required. Setting 0
/// for the max means unlimited number allowed. Max number inheritable.
App *require_option(std::size_t min, std::size_t max) {
require_option_min_ = min;
require_option_max_ = max;
return this;
}
/// Stop subcommand fallthrough, so that parent commands cannot collect commands after subcommand.
/// Default from parent, usually set on parent.
App *fallthrough(bool value = true) {
fallthrough_ = value;
return this;
}
/// Check to see if this subcommand was parsed, true only if received on command line.
/// This allows the subcommand to be directly checked.
explicit operator bool() const { return parsed_ > 0; }
///@}
/// @name Extras for subclassing
///@{
/// This allows subclasses to inject code before callbacks but after parse.
///
/// This does not run if any errors or help is thrown.
virtual void pre_callback() {}
///@}
/// @name Parsing
///@{
//
/// Reset the parsed data
void clear();
/// Parses the command line - throws errors.
/// This must be called after the options are in but before the rest of the program.
void parse(int argc, const char *const *argv);
void parse(int argc, const wchar_t *const *argv);
private:
template <class CharT> void parse_char_t(int argc, const CharT *const *argv);
public:
/// Parse a single string as if it contained command line arguments.
/// This function splits the string into arguments then calls parse(std::vector<std::string> &)
/// the function takes an optional boolean argument specifying if the programName is included in the string to
/// process
void parse(std::string commandline, bool program_name_included = false);
void parse(std::wstring commandline, bool program_name_included = false);
/// The real work is done here. Expects a reversed vector.
/// Changes the vector to the remaining options.
void parse(std::vector<std::string> &args);
/// The real work is done here. Expects a reversed vector.
void parse(std::vector<std::string> &&args);
void parse_from_stream(std::istream &input);
/// Provide a function to print a help message. The function gets access to the App pointer and error.
void failure_message(std::function<std::string(const App *, const Error &e)> function) {
failure_message_ = function;
}
/// Print a nice error message and return the exit code
int exit(const Error &e, std::ostream &out = std::cout, std::ostream &err = std::cerr) const;
///@}
/// @name Post parsing
///@{
/// Counts the number of times the given option was passed.
CLI11_NODISCARD std::size_t count(std::string option_name) const { return get_option(option_name)->count(); }
/// Get a subcommand pointer list to the currently selected subcommands (after parsing by default, in command
/// line order; use parsed = false to get the original definition list.)
CLI11_NODISCARD std::vector<App *> get_subcommands() const { return parsed_subcommands_; }
/// Get a filtered subcommand pointer list from the original definition list. An empty function will provide all
/// subcommands (const)
std::vector<const App *> get_subcommands(const std::function<bool(const App *)> &filter) const;
/// Get a filtered subcommand pointer list from the original definition list. An empty function will provide all
/// subcommands
std::vector<App *> get_subcommands(const std::function<bool(App *)> &filter);
/// Check to see if given subcommand was selected
bool got_subcommand(const App *subcom) const {
// get subcom needed to verify that this was a real subcommand
return get_subcommand(subcom)->parsed_ > 0;
}
/// Check with name instead of pointer to see if subcommand was selected
CLI11_NODISCARD bool got_subcommand(std::string subcommand_name) const noexcept {
App *sub = get_subcommand_no_throw(subcommand_name);
return (sub != nullptr) ? (sub->parsed_ > 0) : false;
}
/// Sets excluded options for the subcommand
App *excludes(Option *opt) {
if(opt == nullptr) {
throw OptionNotFound("nullptr passed");
}
exclude_options_.insert(opt);
return this;
}
/// Sets excluded subcommands for the subcommand
App *excludes(App *app) {
if(app == nullptr) {
throw OptionNotFound("nullptr passed");
}
if(app == this) {
throw OptionNotFound("cannot self reference in needs");
}
auto res = exclude_subcommands_.insert(app);
// subcommand exclusion should be symmetric
if(res.second) {
app->exclude_subcommands_.insert(this);
}
return this;
}
App *needs(Option *opt) {
if(opt == nullptr) {
throw OptionNotFound("nullptr passed");
}
need_options_.insert(opt);
return this;
}
App *needs(App *app) {
if(app == nullptr) {
throw OptionNotFound("nullptr passed");
}
if(app == this) {
throw OptionNotFound("cannot self reference in needs");
}
need_subcommands_.insert(app);
return this;
}
/// Removes an option from the excludes list of this subcommand
bool remove_excludes(Option *opt);
/// Removes a subcommand from the excludes list of this subcommand
bool remove_excludes(App *app);
/// Removes an option from the needs list of this subcommand
bool remove_needs(Option *opt);
/// Removes a subcommand from the needs list of this subcommand
bool remove_needs(App *app);
///@}
/// @name Help
///@{
/// Set usage.
App *usage(std::string usage_string) {
usage_ = std::move(usage_string);
return this;
}
/// Set usage.
App *usage(std::function<std::string()> usage_function) {
usage_callback_ = std::move(usage_function);
return this;
}
/// Set footer.
App *footer(std::string footer_string) {
footer_ = std::move(footer_string);
return this;
}
/// Set footer.
App *footer(std::function<std::string()> footer_function) {
footer_callback_ = std::move(footer_function);
return this;
}
/// Produce a string that could be read in as a config of the current values of the App. Set default_also to
/// include default arguments. write_descriptions will print a description for the App and for each option.
CLI11_NODISCARD std::string config_to_str(bool default_also = false, bool write_description = false) const {
return config_formatter_->to_config(this, default_also, write_description, "");
}
/// Makes a help message, using the currently configured formatter
/// Will only do one subcommand at a time
CLI11_NODISCARD std::string help(std::string prev = "", AppFormatMode mode = AppFormatMode::Normal) const;
/// Displays a version string
CLI11_NODISCARD std::string version() const;
///@}
/// @name Getters
///@{
/// Access the formatter
CLI11_NODISCARD std::shared_ptr<FormatterBase> get_formatter() const { return formatter_; }
/// Access the config formatter
CLI11_NODISCARD std::shared_ptr<Config> get_config_formatter() const { return config_formatter_; }
/// Access the config formatter as a configBase pointer
CLI11_NODISCARD std::shared_ptr<ConfigBase> get_config_formatter_base() const {
// This is safer as a dynamic_cast if we have RTTI, as Config -> ConfigBase
#if CLI11_USE_STATIC_RTTI == 0
return std::dynamic_pointer_cast<ConfigBase>(config_formatter_);
#else
return std::static_pointer_cast<ConfigBase>(config_formatter_);
#endif
}
/// Get the app or subcommand description
CLI11_NODISCARD std::string get_description() const { return description_; }
/// Set the description of the app
App *description(std::string app_description) {
description_ = std::move(app_description);
return this;
}
/// Get the list of options (user facing function, so returns raw pointers), has optional filter function
std::vector<const Option *> get_options(const std::function<bool(const Option *)> filter = {}) const;
/// Non-const version of the above
std::vector<Option *> get_options(const std::function<bool(Option *)> filter = {});
/// Get an option by name (noexcept non-const version)
CLI11_NODISCARD Option *get_option_no_throw(std::string option_name) noexcept;
/// Get an option by name (noexcept const version)
CLI11_NODISCARD const Option *get_option_no_throw(std::string option_name) const noexcept;
/// Get an option by name
CLI11_NODISCARD const Option *get_option(std::string option_name) const {
const auto *opt = get_option_no_throw(option_name);
if(opt == nullptr) {
throw OptionNotFound(option_name);
}
return opt;
}
/// Get an option by name (non-const version)
Option *get_option(std::string option_name) {
auto *opt = get_option_no_throw(option_name);
if(opt == nullptr) {
throw OptionNotFound(option_name);
}
return opt;
}
/// Shortcut bracket operator for getting a pointer to an option
const Option *operator[](const std::string &option_name) const { return get_option(option_name); }
/// Shortcut bracket operator for getting a pointer to an option
const Option *operator[](const char *option_name) const { return get_option(option_name); }
/// Check the status of ignore_case
CLI11_NODISCARD bool get_ignore_case() const { return ignore_case_; }
/// Check the status of ignore_underscore
CLI11_NODISCARD bool get_ignore_underscore() const { return ignore_underscore_; }
/// Check the status of fallthrough
CLI11_NODISCARD bool get_fallthrough() const { return fallthrough_; }
/// Check the status of the allow windows style options
CLI11_NODISCARD bool get_allow_windows_style_options() const { return allow_windows_style_options_; }
/// Check the status of the allow windows style options
CLI11_NODISCARD bool get_positionals_at_end() const { return positionals_at_end_; }
/// Check the status of the allow windows style options
CLI11_NODISCARD bool get_configurable() const { return configurable_; }
/// Get the group of this subcommand
CLI11_NODISCARD const std::string &get_group() const { return group_; }
/// Generate and return the usage.
CLI11_NODISCARD std::string get_usage() const {
return (usage_callback_) ? usage_callback_() + '\n' + usage_ : usage_;
}
/// Generate and return the footer.
CLI11_NODISCARD std::string get_footer() const {
return (footer_callback_) ? footer_callback_() + '\n' + footer_ : footer_;
}
/// Get the required min subcommand value
CLI11_NODISCARD std::size_t get_require_subcommand_min() const { return require_subcommand_min_; }
/// Get the required max subcommand value
CLI11_NODISCARD std::size_t get_require_subcommand_max() const { return require_subcommand_max_; }
/// Get the required min option value
CLI11_NODISCARD std::size_t get_require_option_min() const { return require_option_min_; }
/// Get the required max option value
CLI11_NODISCARD std::size_t get_require_option_max() const { return require_option_max_; }
/// Get the prefix command status
CLI11_NODISCARD bool get_prefix_command() const { return prefix_command_; }
/// Get the status of allow extras
CLI11_NODISCARD bool get_allow_extras() const { return allow_extras_; }
/// Get the status of required
CLI11_NODISCARD bool get_required() const { return required_; }
/// Get the status of disabled
CLI11_NODISCARD bool get_disabled() const { return disabled_; }
/// Get the status of silence
CLI11_NODISCARD bool get_silent() const { return silent_; }
/// Get the status of disabled
CLI11_NODISCARD bool get_immediate_callback() const { return immediate_callback_; }
/// Get the status of disabled by default
CLI11_NODISCARD bool get_disabled_by_default() const { return (default_startup == startup_mode::disabled); }
/// Get the status of disabled by default
CLI11_NODISCARD bool get_enabled_by_default() const { return (default_startup == startup_mode::enabled); }
/// Get the status of validating positionals
CLI11_NODISCARD bool get_validate_positionals() const { return validate_positionals_; }
/// Get the status of validating optional vector arguments
CLI11_NODISCARD bool get_validate_optional_arguments() const { return validate_optional_arguments_; }
/// Get the status of allow extras
CLI11_NODISCARD config_extras_mode get_allow_config_extras() const { return allow_config_extras_; }
/// Get a pointer to the help flag.
Option *get_help_ptr() { return help_ptr_; }
/// Get a pointer to the help flag. (const)
CLI11_NODISCARD const Option *get_help_ptr() const { return help_ptr_; }
/// Get a pointer to the help all flag. (const)
CLI11_NODISCARD const Option *get_help_all_ptr() const { return help_all_ptr_; }
/// Get a pointer to the config option.
Option *get_config_ptr() { return config_ptr_; }
/// Get a pointer to the config option. (const)
CLI11_NODISCARD const Option *get_config_ptr() const { return config_ptr_; }
/// Get a pointer to the version option.
Option *get_version_ptr() { return version_ptr_; }
/// Get a pointer to the version option. (const)
CLI11_NODISCARD const Option *get_version_ptr() const { return version_ptr_; }
/// Get the parent of this subcommand (or nullptr if main app)
App *get_parent() { return parent_; }
/// Get the parent of this subcommand (or nullptr if main app) (const version)
CLI11_NODISCARD const App *get_parent() const { return parent_; }
/// Get the name of the current app
CLI11_NODISCARD const std::string &get_name() const { return name_; }
/// Get the aliases of the current app
CLI11_NODISCARD const std::vector<std::string> &get_aliases() const { return aliases_; }
/// clear all the aliases of the current App
App *clear_aliases() {
aliases_.clear();
return this;
}
/// Get a display name for an app
CLI11_NODISCARD std::string get_display_name(bool with_aliases = false) const;
/// Check the name, case insensitive and underscore insensitive if set
CLI11_NODISCARD bool check_name(std::string name_to_check) const;
/// Get the groups available directly from this option (in order)
CLI11_NODISCARD std::vector<std::string> get_groups() const;
/// This gets a vector of pointers with the original parse order
CLI11_NODISCARD const std::vector<Option *> &parse_order() const { return parse_order_; }
/// This returns the missing options from the current subcommand
CLI11_NODISCARD std::vector<std::string> remaining(bool recurse = false) const;
/// This returns the missing options in a form ready for processing by another command line program
CLI11_NODISCARD std::vector<std::string> remaining_for_passthrough(bool recurse = false) const;
/// This returns the number of remaining options, minus the -- separator
CLI11_NODISCARD std::size_t remaining_size(bool recurse = false) const;
///@}
protected:
/// Check the options to make sure there are no conflicts.
///
/// Currently checks to see if multiple positionals exist with unlimited args and checks if the min and max options
/// are feasible
void _validate() const;
/// configure subcommands to enable parsing through the current object
/// set the correct fallthrough and prefix for nameless subcommands and manage the automatic enable or disable
/// makes sure parent is set correctly
void _configure();
/// Internal function to run (App) callback, bottom up
void run_callback(bool final_mode = false, bool suppress_final_callback = false);
/// Check to see if a subcommand is valid. Give up immediately if subcommand max has been reached.
CLI11_NODISCARD bool _valid_subcommand(const std::string &current, bool ignore_used = true) const;
/// Selects a Classifier enum based on the type of the current argument
CLI11_NODISCARD detail::Classifier _recognize(const std::string &current,
bool ignore_used_subcommands = true) const;
// The parse function is now broken into several parts, and part of process
/// Read and process a configuration file (main app only)
void _process_config_file();
/// Read and process a particular configuration file
bool _process_config_file(const std::string &config_file, bool throw_error);
/// Get envname options if not yet passed. Runs on *all* subcommands.
void _process_env();
/// Process callbacks. Runs on *all* subcommands.
void _process_callbacks();
/// Run help flag processing if any are found.
///
/// The flags allow recursive calls to remember if there was a help flag on a parent.
void _process_help_flags(bool trigger_help = false, bool trigger_all_help = false) const;
/// Verify required options and cross requirements. Subcommands too (only if selected).
void _process_requirements();
/// Process callbacks and such.
void _process();
/// Throw an error if anything is left over and should not be.
void _process_extras();
/// Throw an error if anything is left over and should not be.
/// Modifies the args to fill in the missing items before throwing.
void _process_extras(std::vector<std::string> &args);
/// Internal function to recursively increment the parsed counter on the current app as well unnamed subcommands
void increment_parsed();
/// Internal parse function
void _parse(std::vector<std::string> &args);
/// Internal parse function
void _parse(std::vector<std::string> &&args);
/// Internal function to parse a stream
void _parse_stream(std::istream &input);
/// Parse one config param, return false if not found in any subcommand, remove if it is
///
/// If this has more than one dot.separated.name, go into the subcommand matching it
/// Returns true if it managed to find the option, if false you'll need to remove the arg manually.
void _parse_config(const std::vector<ConfigItem> &args);
/// Fill in a single config option
bool _parse_single_config(const ConfigItem &item, std::size_t level = 0);
/// Parse "one" argument (some may eat more than one), delegate to parent if fails, add to missing if missing
/// from main return false if the parse has failed and needs to return to parent
bool _parse_single(std::vector<std::string> &args, bool &positional_only);
/// Count the required remaining positional arguments
CLI11_NODISCARD std::size_t _count_remaining_positionals(bool required_only = false) const;
/// Count the required remaining positional arguments
CLI11_NODISCARD bool _has_remaining_positionals() const;
/// Parse a positional, go up the tree to check
/// @param haltOnSubcommand if set to true the operation will not process subcommands merely return false
/// Return true if the positional was used false otherwise
bool _parse_positional(std::vector<std::string> &args, bool haltOnSubcommand);
/// Locate a subcommand by name with two conditions, should disabled subcommands be ignored, and should used
/// subcommands be ignored
CLI11_NODISCARD App *
_find_subcommand(const std::string &subc_name, bool ignore_disabled, bool ignore_used) const noexcept;
/// Parse a subcommand, modify args and continue
///
/// Unlike the others, this one will always allow fallthrough
/// return true if the subcommand was processed false otherwise
bool _parse_subcommand(std::vector<std::string> &args);
/// Parse a short (false) or long (true) argument, must be at the top of the list
/// if local_processing_only is set to true then fallthrough is disabled will return false if not found
/// return true if the argument was processed or false if nothing was done
bool _parse_arg(std::vector<std::string> &args, detail::Classifier current_type, bool local_processing_only);
/// Trigger the pre_parse callback if needed
void _trigger_pre_parse(std::size_t remaining_args);
/// Get the appropriate parent to fallthrough to which is the first one that has a name or the main app
App *_get_fallthrough_parent();
/// Helper function to run through all possible comparisons of subcommand names to check there is no overlap
CLI11_NODISCARD const std::string &_compare_subcommand_names(const App &subcom, const App &base) const;
/// Helper function to place extra values in the most appropriate position
void _move_to_missing(detail::Classifier val_type, const std::string &val);
public:
/// function that could be used by subclasses of App to shift options around into subcommands
void _move_option(Option *opt, App *app);
}; // namespace CLI
/// Extension of App to better manage groups of options
class Option_group : public App {
public:
Option_group(std::string group_description, std::string group_name, App *parent)
: App(std::move(group_description), "", parent) {
group(group_name);
// option groups should have automatic fallthrough
}
using App::add_option;
/// Add an existing option to the Option_group
Option *add_option(Option *opt) {
if(get_parent() == nullptr) {
throw OptionNotFound("Unable to locate the specified option");
}
get_parent()->_move_option(opt, this);
return opt;
}
/// Add an existing option to the Option_group
void add_options(Option *opt) { add_option(opt); }
/// Add a bunch of options to the group
template <typename... Args> void add_options(Option *opt, Args... args) {
add_option(opt);
add_options(args...);
}
using App::add_subcommand;
/// Add an existing subcommand to be a member of an option_group
App *add_subcommand(App *subcom) {
App_p subc = subcom->get_parent()->get_subcommand_ptr(subcom);
subc->get_parent()->remove_subcommand(subcom);
add_subcommand(std::move(subc));
return subcom;
}
};
/// Helper function to enable one option group/subcommand when another is used
CLI11_INLINE void TriggerOn(App *trigger_app, App *app_to_enable);
/// Helper function to enable one option group/subcommand when another is used
CLI11_INLINE void TriggerOn(App *trigger_app, std::vector<App *> apps_to_enable);
/// Helper function to disable one option group/subcommand when another is used
CLI11_INLINE void TriggerOff(App *trigger_app, App *app_to_enable);
/// Helper function to disable one option group/subcommand when another is used
CLI11_INLINE void TriggerOff(App *trigger_app, std::vector<App *> apps_to_enable);
/// Helper function to mark an option as deprecated
CLI11_INLINE void deprecate_option(Option *opt, const std::string &replacement = "");
/// Helper function to mark an option as deprecated
inline void deprecate_option(App *app, const std::string &option_name, const std::string &replacement = "") {
auto *opt = app->get_option(option_name);
deprecate_option(opt, replacement);
}
/// Helper function to mark an option as deprecated
inline void deprecate_option(App &app, const std::string &option_name, const std::string &replacement = "") {
auto *opt = app.get_option(option_name);
deprecate_option(opt, replacement);
}
/// Helper function to mark an option as retired
CLI11_INLINE void retire_option(App *app, Option *opt);
/// Helper function to mark an option as retired
CLI11_INLINE void retire_option(App &app, Option *opt);
/// Helper function to mark an option as retired
CLI11_INLINE void retire_option(App *app, const std::string &option_name);
/// Helper function to mark an option as retired
CLI11_INLINE void retire_option(App &app, const std::string &option_name);
namespace detail {
/// This class is simply to allow tests access to App's protected functions
struct AppFriend {
#ifdef CLI11_CPP14
/// Wrap _parse_short, perfectly forward arguments and return
template <typename... Args> static decltype(auto) parse_arg(App *app, Args &&...args) {
return app->_parse_arg(std::forward<Args>(args)...);
}
/// Wrap _parse_subcommand, perfectly forward arguments and return
template <typename... Args> static decltype(auto) parse_subcommand(App *app, Args &&...args) {
return app->_parse_subcommand(std::forward<Args>(args)...);
}
#else
/// Wrap _parse_short, perfectly forward arguments and return
template <typename... Args>
static auto parse_arg(App *app, Args &&...args) ->
typename std::result_of<decltype (&App::_parse_arg)(App, Args...)>::type {
return app->_parse_arg(std::forward<Args>(args)...);
}
/// Wrap _parse_subcommand, perfectly forward arguments and return
template <typename... Args>
static auto parse_subcommand(App *app, Args &&...args) ->
typename std::result_of<decltype (&App::_parse_subcommand)(App, Args...)>::type {
return app->_parse_subcommand(std::forward<Args>(args)...);
}
#endif
/// Wrap the fallthrough parent function to make sure that is working correctly
static App *get_fallthrough_parent(App *app) { return app->_get_fallthrough_parent(); }
};
} // namespace detail
CLI11_INLINE App::App(std::string app_description, std::string app_name, App *parent)
: name_(std::move(app_name)), description_(std::move(app_description)), parent_(parent) {
// Inherit if not from a nullptr
if(parent_ != nullptr) {
if(parent_->help_ptr_ != nullptr)
set_help_flag(parent_->help_ptr_->get_name(false, true), parent_->help_ptr_->get_description());
if(parent_->help_all_ptr_ != nullptr)
set_help_all_flag(parent_->help_all_ptr_->get_name(false, true), parent_->help_all_ptr_->get_description());
/// OptionDefaults
option_defaults_ = parent_->option_defaults_;
// INHERITABLE
failure_message_ = parent_->failure_message_;
allow_extras_ = parent_->allow_extras_;
allow_config_extras_ = parent_->allow_config_extras_;
prefix_command_ = parent_->prefix_command_;
immediate_callback_ = parent_->immediate_callback_;
ignore_case_ = parent_->ignore_case_;
ignore_underscore_ = parent_->ignore_underscore_;
fallthrough_ = parent_->fallthrough_;
validate_positionals_ = parent_->validate_positionals_;
validate_optional_arguments_ = parent_->validate_optional_arguments_;
configurable_ = parent_->configurable_;
allow_windows_style_options_ = parent_->allow_windows_style_options_;
group_ = parent_->group_;
usage_ = parent_->usage_;
footer_ = parent_->footer_;
formatter_ = parent_->formatter_;
config_formatter_ = parent_->config_formatter_;
require_subcommand_max_ = parent_->require_subcommand_max_;
}
}
CLI11_NODISCARD CLI11_INLINE char **App::ensure_utf8(char **argv) {
#ifdef _WIN32
(void)argv;
normalized_argv_ = detail::compute_win32_argv();
if(!normalized_argv_view_.empty()) {
normalized_argv_view_.clear();
}
normalized_argv_view_.reserve(normalized_argv_.size());
for(auto &arg : normalized_argv_) {
// using const_cast is well-defined, string is known to not be const.
normalized_argv_view_.push_back(const_cast<char *>(arg.data()));
}
return normalized_argv_view_.data();
#else
return argv;
#endif
}
CLI11_INLINE App *App::name(std::string app_name) {
if(parent_ != nullptr) {
std::string oname = name_;
name_ = app_name;
const auto &res = _compare_subcommand_names(*this, *_get_fallthrough_parent());
if(!res.empty()) {
name_ = oname;
throw(OptionAlreadyAdded(app_name + " conflicts with existing subcommand names"));
}
} else {
name_ = app_name;
}
has_automatic_name_ = false;
return this;
}
CLI11_INLINE App *App::alias(std::string app_name) {
if(app_name.empty() || !detail::valid_alias_name_string(app_name)) {
throw IncorrectConstruction("Aliases may not be empty or contain newlines or null characters");
}
if(parent_ != nullptr) {
aliases_.push_back(app_name);
const auto &res = _compare_subcommand_names(*this, *_get_fallthrough_parent());
if(!res.empty()) {
aliases_.pop_back();
throw(OptionAlreadyAdded("alias already matches an existing subcommand: " + app_name));
}
} else {
aliases_.push_back(app_name);
}
return this;
}
CLI11_INLINE App *App::immediate_callback(bool immediate) {
immediate_callback_ = immediate;
if(immediate_callback_) {
if(final_callback_ && !(parse_complete_callback_)) {
std::swap(final_callback_, parse_complete_callback_);
}
} else if(!(final_callback_) && parse_complete_callback_) {
std::swap(final_callback_, parse_complete_callback_);
}
return this;
}
CLI11_INLINE App *App::ignore_case(bool value) {
if(value && !ignore_case_) {
ignore_case_ = true;
auto *p = (parent_ != nullptr) ? _get_fallthrough_parent() : this;
const auto &match = _compare_subcommand_names(*this, *p);
if(!match.empty()) {
ignore_case_ = false; // we are throwing so need to be exception invariant
throw OptionAlreadyAdded("ignore case would cause subcommand name conflicts: " + match);
}
}
ignore_case_ = value;
return this;
}
CLI11_INLINE App *App::ignore_underscore(bool value) {
if(value && !ignore_underscore_) {
ignore_underscore_ = true;
auto *p = (parent_ != nullptr) ? _get_fallthrough_parent() : this;
const auto &match = _compare_subcommand_names(*this, *p);
if(!match.empty()) {
ignore_underscore_ = false;
throw OptionAlreadyAdded("ignore underscore would cause subcommand name conflicts: " + match);
}
}
ignore_underscore_ = value;
return this;
}
CLI11_INLINE Option *App::add_option(std::string option_name,
callback_t option_callback,
std::string option_description,
bool defaulted,
std::function<std::string()> func) {
Option myopt{option_name, option_description, option_callback, this};
if(std::find_if(std::begin(options_), std::end(options_), [&myopt](const Option_p &v) { return *v == myopt; }) ==
std::end(options_)) {
if(myopt.lnames_.empty() && myopt.snames_.empty()) {
// if the option is positional only there is additional potential for ambiguities in config files and needs
// to be checked
std::string test_name = "--" + myopt.get_single_name();
if(test_name.size() == 3) {
test_name.erase(0, 1);
}
auto *op = get_option_no_throw(test_name);
if(op != nullptr) {
throw(OptionAlreadyAdded("added option positional name matches existing option: " + test_name));
}
} else if(parent_ != nullptr) {
for(auto &ln : myopt.lnames_) {
auto *op = parent_->get_option_no_throw(ln);
if(op != nullptr) {
throw(OptionAlreadyAdded("added option matches existing positional option: " + ln));
}
}
for(auto &sn : myopt.snames_) {
auto *op = parent_->get_option_no_throw(sn);
if(op != nullptr) {
throw(OptionAlreadyAdded("added option matches existing positional option: " + sn));
}
}
}
options_.emplace_back();
Option_p &option = options_.back();
option.reset(new Option(option_name, option_description, option_callback, this));
// Set the default string capture function
option->default_function(func);
// For compatibility with CLI11 1.7 and before, capture the default string here
if(defaulted)
option->capture_default_str();
// Transfer defaults to the new option
option_defaults_.copy_to(option.get());
// Don't bother to capture if we already did
if(!defaulted && option->get_always_capture_default())
option->capture_default_str();
return option.get();
}
// we know something matches now find what it is so we can produce more error information
for(auto &opt : options_) {
const auto &matchname = opt->matching_name(myopt);
if(!matchname.empty()) {
throw(OptionAlreadyAdded("added option matched existing option name: " + matchname));
}
}
// this line should not be reached the above loop should trigger the throw
throw(OptionAlreadyAdded("added option matched existing option name")); // LCOV_EXCL_LINE
}
CLI11_INLINE Option *App::set_help_flag(std::string flag_name, const std::string &help_description) {
// take flag_description by const reference otherwise add_flag tries to assign to help_description
if(help_ptr_ != nullptr) {
remove_option(help_ptr_);
help_ptr_ = nullptr;
}
// Empty name will simply remove the help flag
if(!flag_name.empty()) {
help_ptr_ = add_flag(flag_name, help_description);
help_ptr_->configurable(false);
}
return help_ptr_;
}
CLI11_INLINE Option *App::set_help_all_flag(std::string help_name, const std::string &help_description) {
// take flag_description by const reference otherwise add_flag tries to assign to flag_description
if(help_all_ptr_ != nullptr) {
remove_option(help_all_ptr_);
help_all_ptr_ = nullptr;
}
// Empty name will simply remove the help all flag
if(!help_name.empty()) {
help_all_ptr_ = add_flag(help_name, help_description);
help_all_ptr_->configurable(false);
}
return help_all_ptr_;
}
CLI11_INLINE Option *
App::set_version_flag(std::string flag_name, const std::string &versionString, const std::string &version_help) {
// take flag_description by const reference otherwise add_flag tries to assign to version_description
if(version_ptr_ != nullptr) {
remove_option(version_ptr_);
version_ptr_ = nullptr;
}
// Empty name will simply remove the version flag
if(!flag_name.empty()) {
version_ptr_ = add_flag_callback(
flag_name, [versionString]() { throw(CLI::CallForVersion(versionString, 0)); }, version_help);
version_ptr_->configurable(false);
}
return version_ptr_;
}
CLI11_INLINE Option *
App::set_version_flag(std::string flag_name, std::function<std::string()> vfunc, const std::string &version_help) {
if(version_ptr_ != nullptr) {
remove_option(version_ptr_);
version_ptr_ = nullptr;
}
// Empty name will simply remove the version flag
if(!flag_name.empty()) {
version_ptr_ =
add_flag_callback(flag_name, [vfunc]() { throw(CLI::CallForVersion(vfunc(), 0)); }, version_help);
version_ptr_->configurable(false);
}
return version_ptr_;
}
CLI11_INLINE Option *App::_add_flag_internal(std::string flag_name, CLI::callback_t fun, std::string flag_description) {
Option *opt = nullptr;
if(detail::has_default_flag_values(flag_name)) {
// check for default values and if it has them
auto flag_defaults = detail::get_default_flag_values(flag_name);
detail::remove_default_flag_values(flag_name);
opt = add_option(std::move(flag_name), std::move(fun), std::move(flag_description), false);
for(const auto &fname : flag_defaults)
opt->fnames_.push_back(fname.first);
opt->default_flag_values_ = std::move(flag_defaults);
} else {
opt = add_option(std::move(flag_name), std::move(fun), std::move(flag_description), false);
}
// flags cannot have positional values
if(opt->get_positional()) {
auto pos_name = opt->get_name(true);
remove_option(opt);
throw IncorrectConstruction::PositionalFlag(pos_name);
}
opt->multi_option_policy(MultiOptionPolicy::TakeLast);
opt->expected(0);
opt->required(false);
return opt;
}
CLI11_INLINE Option *App::add_flag_callback(std::string flag_name,
std::function<void(void)> function, ///< A function to call, void(void)
std::string flag_description) {
CLI::callback_t fun = [function](const CLI::results_t &res) {
using CLI::detail::lexical_cast;
bool trigger{false};
auto result = lexical_cast(res[0], trigger);
if(result && trigger) {
function();
}
return result;
};
return _add_flag_internal(flag_name, std::move(fun), std::move(flag_description));
}
CLI11_INLINE Option *
App::add_flag_function(std::string flag_name,
std::function<void(std::int64_t)> function, ///< A function to call, void(int)
std::string flag_description) {
CLI::callback_t fun = [function](const CLI::results_t &res) {
using CLI::detail::lexical_cast;
std::int64_t flag_count{0};
lexical_cast(res[0], flag_count);
function(flag_count);
return true;
};
return _add_flag_internal(flag_name, std::move(fun), std::move(flag_description))
->multi_option_policy(MultiOptionPolicy::Sum);
}
CLI11_INLINE Option *App::set_config(std::string option_name,
std::string default_filename,
const std::string &help_message,
bool config_required) {
// Remove existing config if present
if(config_ptr_ != nullptr) {
remove_option(config_ptr_);
config_ptr_ = nullptr; // need to remove the config_ptr completely
}
// Only add config if option passed
if(!option_name.empty()) {
config_ptr_ = add_option(option_name, help_message);
if(config_required) {
config_ptr_->required();
}
if(!default_filename.empty()) {
config_ptr_->default_str(std::move(default_filename));
config_ptr_->force_callback_ = true;
}
config_ptr_->configurable(false);
// set the option to take the last value and reverse given by default
config_ptr_->multi_option_policy(MultiOptionPolicy::Reverse);
}
return config_ptr_;
}
CLI11_INLINE bool App::remove_option(Option *opt) {
// Make sure no links exist
for(Option_p &op : options_) {
op->remove_needs(opt);
op->remove_excludes(opt);
}
if(help_ptr_ == opt)
help_ptr_ = nullptr;
if(help_all_ptr_ == opt)
help_all_ptr_ = nullptr;
auto iterator =
std::find_if(std::begin(options_), std::end(options_), [opt](const Option_p &v) { return v.get() == opt; });
if(iterator != std::end(options_)) {
options_.erase(iterator);
return true;
}
return false;
}
CLI11_INLINE App *App::add_subcommand(std::string subcommand_name, std::string subcommand_description) {
if(!subcommand_name.empty() && !detail::valid_name_string(subcommand_name)) {
if(!detail::valid_first_char(subcommand_name[0])) {
throw IncorrectConstruction(
"Subcommand name starts with invalid character, '!' and '-' and control characters");
}
for(auto c : subcommand_name) {
if(!detail::valid_later_char(c)) {
throw IncorrectConstruction(std::string("Subcommand name contains invalid character ('") + c +
"'), all characters are allowed except"
"'=',':','{','}', ' ', and control characters");
}
}
}
CLI::App_p subcom = std::shared_ptr<App>(new App(std::move(subcommand_description), subcommand_name, this));
return add_subcommand(std::move(subcom));
}
CLI11_INLINE App *App::add_subcommand(CLI::App_p subcom) {
if(!subcom)
throw IncorrectConstruction("passed App is not valid");
auto *ckapp = (name_.empty() && parent_ != nullptr) ? _get_fallthrough_parent() : this;
const auto &mstrg = _compare_subcommand_names(*subcom, *ckapp);
if(!mstrg.empty()) {
throw(OptionAlreadyAdded("subcommand name or alias matches existing subcommand: " + mstrg));
}
subcom->parent_ = this;
subcommands_.push_back(std::move(subcom));
return subcommands_.back().get();
}
CLI11_INLINE bool App::remove_subcommand(App *subcom) {
// Make sure no links exist
for(App_p &sub : subcommands_) {
sub->remove_excludes(subcom);
sub->remove_needs(subcom);
}
auto iterator = std::find_if(
std::begin(subcommands_), std::end(subcommands_), [subcom](const App_p &v) { return v.get() == subcom; });
if(iterator != std::end(subcommands_)) {
subcommands_.erase(iterator);
return true;
}
return false;
}
CLI11_INLINE App *App::get_subcommand(const App *subcom) const {
if(subcom == nullptr)
throw OptionNotFound("nullptr passed");
for(const App_p &subcomptr : subcommands_)
if(subcomptr.get() == subcom)
return subcomptr.get();
throw OptionNotFound(subcom->get_name());
}
CLI11_NODISCARD CLI11_INLINE App *App::get_subcommand(std::string subcom) const {
auto *subc = _find_subcommand(subcom, false, false);
if(subc == nullptr)
throw OptionNotFound(subcom);
return subc;
}
CLI11_NODISCARD CLI11_INLINE App *App::get_subcommand_no_throw(std::string subcom) const noexcept {
return _find_subcommand(subcom, false, false);
}
CLI11_NODISCARD CLI11_INLINE App *App::get_subcommand(int index) const {
if(index >= 0) {
auto uindex = static_cast<unsigned>(index);
if(uindex < subcommands_.size())
return subcommands_[uindex].get();
}
throw OptionNotFound(std::to_string(index));
}
CLI11_INLINE CLI::App_p App::get_subcommand_ptr(App *subcom) const {
if(subcom == nullptr)
throw OptionNotFound("nullptr passed");
for(const App_p &subcomptr : subcommands_)
if(subcomptr.get() == subcom)
return subcomptr;
throw OptionNotFound(subcom->get_name());
}
CLI11_NODISCARD CLI11_INLINE CLI::App_p App::get_subcommand_ptr(std::string subcom) const {
for(const App_p &subcomptr : subcommands_)
if(subcomptr->check_name(subcom))
return subcomptr;
throw OptionNotFound(subcom);
}
CLI11_NODISCARD CLI11_INLINE CLI::App_p App::get_subcommand_ptr(int index) const {
if(index >= 0) {
auto uindex = static_cast<unsigned>(index);
if(uindex < subcommands_.size())
return subcommands_[uindex];
}
throw OptionNotFound(std::to_string(index));
}
CLI11_NODISCARD CLI11_INLINE CLI::App *App::get_option_group(std::string group_name) const {
for(const App_p &app : subcommands_) {
if(app->name_.empty() && app->group_ == group_name) {
return app.get();
}
}
throw OptionNotFound(group_name);
}
CLI11_NODISCARD CLI11_INLINE std::size_t App::count_all() const {
std::size_t cnt{0};
for(const auto &opt : options_) {
cnt += opt->count();
}
for(const auto &sub : subcommands_) {
cnt += sub->count_all();
}
if(!get_name().empty()) { // for named subcommands add the number of times the subcommand was called
cnt += parsed_;
}
return cnt;
}
CLI11_INLINE void App::clear() {
parsed_ = 0;
pre_parse_called_ = false;
missing_.clear();
parsed_subcommands_.clear();
for(const Option_p &opt : options_) {
opt->clear();
}
for(const App_p &subc : subcommands_) {
subc->clear();
}
}
CLI11_INLINE void App::parse(int argc, const char *const *argv) { parse_char_t(argc, argv); }
CLI11_INLINE void App::parse(int argc, const wchar_t *const *argv) { parse_char_t(argc, argv); }
namespace detail {
// Do nothing or perform narrowing
CLI11_INLINE const char *maybe_narrow(const char *str) { return str; }
CLI11_INLINE std::string maybe_narrow(const wchar_t *str) { return narrow(str); }
} // namespace detail
template <class CharT> CLI11_INLINE void App::parse_char_t(int argc, const CharT *const *argv) {
// If the name is not set, read from command line
if(name_.empty() || has_automatic_name_) {
has_automatic_name_ = true;
name_ = detail::maybe_narrow(argv[0]);
}
std::vector<std::string> args;
args.reserve(static_cast<std::size_t>(argc) - 1U);
for(auto i = static_cast<std::size_t>(argc) - 1U; i > 0U; --i)
args.emplace_back(detail::maybe_narrow(argv[i]));
parse(std::move(args));
}
CLI11_INLINE void App::parse(std::string commandline, bool program_name_included) {
if(program_name_included) {
auto nstr = detail::split_program_name(commandline);
if((name_.empty()) || (has_automatic_name_)) {
has_automatic_name_ = true;
name_ = nstr.first;
}
commandline = std::move(nstr.second);
} else {
detail::trim(commandline);
}
// the next section of code is to deal with quoted arguments after an '=' or ':' for windows like operations
if(!commandline.empty()) {
commandline = detail::find_and_modify(commandline, "=", detail::escape_detect);
if(allow_windows_style_options_)
commandline = detail::find_and_modify(commandline, ":", detail::escape_detect);
}
auto args = detail::split_up(std::move(commandline));
// remove all empty strings
args.erase(std::remove(args.begin(), args.end(), std::string{}), args.end());
try {
detail::remove_quotes(args);
} catch(const std::invalid_argument &arg) {
throw CLI::ParseError(arg.what(), CLI::ExitCodes::InvalidError);
}
std::reverse(args.begin(), args.end());
parse(std::move(args));
}
CLI11_INLINE void App::parse(std::wstring commandline, bool program_name_included) {
parse(narrow(commandline), program_name_included);
}
CLI11_INLINE void App::parse(std::vector<std::string> &args) {
// Clear if parsed
if(parsed_ > 0)
clear();
// parsed_ is incremented in commands/subcommands,
// but placed here to make sure this is cleared when
// running parse after an error is thrown, even by _validate or _configure.
parsed_ = 1;
_validate();
_configure();
// set the parent as nullptr as this object should be the top now
parent_ = nullptr;
parsed_ = 0;
_parse(args);
run_callback();
}
CLI11_INLINE void App::parse(std::vector<std::string> &&args) {
// Clear if parsed
if(parsed_ > 0)
clear();
// parsed_ is incremented in commands/subcommands,
// but placed here to make sure this is cleared when
// running parse after an error is thrown, even by _validate or _configure.
parsed_ = 1;
_validate();
_configure();
// set the parent as nullptr as this object should be the top now
parent_ = nullptr;
parsed_ = 0;
_parse(std::move(args));
run_callback();
}
CLI11_INLINE void App::parse_from_stream(std::istream &input) {
if(parsed_ == 0) {
_validate();
_configure();
// set the parent as nullptr as this object should be the top now
}
_parse_stream(input);
run_callback();
}
CLI11_INLINE int App::exit(const Error &e, std::ostream &out, std::ostream &err) const {
/// Avoid printing anything if this is a CLI::RuntimeError
if(e.get_name() == "RuntimeError")
return e.get_exit_code();
if(e.get_name() == "CallForHelp") {
out << help();
return e.get_exit_code();
}
if(e.get_name() == "CallForAllHelp") {
out << help("", AppFormatMode::All);
return e.get_exit_code();
}
if(e.get_name() == "CallForVersion") {
out << e.what() << '\n';
return e.get_exit_code();
}
if(e.get_exit_code() != static_cast<int>(ExitCodes::Success)) {
if(failure_message_)
err << failure_message_(this, e) << std::flush;
}
return e.get_exit_code();
}
CLI11_INLINE std::vector<const App *> App::get_subcommands(const std::function<bool(const App *)> &filter) const {
std::vector<const App *> subcomms(subcommands_.size());
std::transform(
std::begin(subcommands_), std::end(subcommands_), std::begin(subcomms), [](const App_p &v) { return v.get(); });
if(filter) {
subcomms.erase(std::remove_if(std::begin(subcomms),
std::end(subcomms),
[&filter](const App *app) { return !filter(app); }),
std::end(subcomms));
}
return subcomms;
}
CLI11_INLINE std::vector<App *> App::get_subcommands(const std::function<bool(App *)> &filter) {
std::vector<App *> subcomms(subcommands_.size());
std::transform(
std::begin(subcommands_), std::end(subcommands_), std::begin(subcomms), [](const App_p &v) { return v.get(); });
if(filter) {
subcomms.erase(
std::remove_if(std::begin(subcomms), std::end(subcomms), [&filter](App *app) { return !filter(app); }),
std::end(subcomms));
}
return subcomms;
}
CLI11_INLINE bool App::remove_excludes(Option *opt) {
auto iterator = std::find(std::begin(exclude_options_), std::end(exclude_options_), opt);
if(iterator == std::end(exclude_options_)) {
return false;
}
exclude_options_.erase(iterator);
return true;
}
CLI11_INLINE bool App::remove_excludes(App *app) {
auto iterator = std::find(std::begin(exclude_subcommands_), std::end(exclude_subcommands_), app);
if(iterator == std::end(exclude_subcommands_)) {
return false;
}
auto *other_app = *iterator;
exclude_subcommands_.erase(iterator);
other_app->remove_excludes(this);
return true;
}
CLI11_INLINE bool App::remove_needs(Option *opt) {
auto iterator = std::find(std::begin(need_options_), std::end(need_options_), opt);
if(iterator == std::end(need_options_)) {
return false;
}
need_options_.erase(iterator);
return true;
}
CLI11_INLINE bool App::remove_needs(App *app) {
auto iterator = std::find(std::begin(need_subcommands_), std::end(need_subcommands_), app);
if(iterator == std::end(need_subcommands_)) {
return false;
}
need_subcommands_.erase(iterator);
return true;
}
CLI11_NODISCARD CLI11_INLINE std::string App::help(std::string prev, AppFormatMode mode) const {
if(prev.empty())
prev = get_name();
else
prev += " " + get_name();
// Delegate to subcommand if needed
auto selected_subcommands = get_subcommands();
if(!selected_subcommands.empty()) {
return selected_subcommands.back()->help(prev, mode);
}
return formatter_->make_help(this, prev, mode);
}
CLI11_NODISCARD CLI11_INLINE std::string App::version() const {
std::string val;
if(version_ptr_ != nullptr) {
// copy the results for reuse later
results_t rv = version_ptr_->results();
version_ptr_->clear();
version_ptr_->add_result("true");
try {
version_ptr_->run_callback();
} catch(const CLI::CallForVersion &cfv) {
val = cfv.what();
}
version_ptr_->clear();
version_ptr_->add_result(rv);
}
return val;
}
CLI11_INLINE std::vector<const Option *> App::get_options(const std::function<bool(const Option *)> filter) const {
std::vector<const Option *> options(options_.size());
std::transform(
std::begin(options_), std::end(options_), std::begin(options), [](const Option_p &val) { return val.get(); });
if(filter) {
options.erase(std::remove_if(std::begin(options),
std::end(options),
[&filter](const Option *opt) { return !filter(opt); }),
std::end(options));
}
return options;
}
CLI11_INLINE std::vector<Option *> App::get_options(const std::function<bool(Option *)> filter) {
std::vector<Option *> options(options_.size());
std::transform(
std::begin(options_), std::end(options_), std::begin(options), [](const Option_p &val) { return val.get(); });
if(filter) {
options.erase(
std::remove_if(std::begin(options), std::end(options), [&filter](Option *opt) { return !filter(opt); }),
std::end(options));
}
return options;
}
CLI11_NODISCARD CLI11_INLINE Option *App::get_option_no_throw(std::string option_name) noexcept {
for(Option_p &opt : options_) {
if(opt->check_name(option_name)) {
return opt.get();
}
}
for(auto &subc : subcommands_) {
// also check down into nameless subcommands
if(subc->get_name().empty()) {
auto *opt = subc->get_option_no_throw(option_name);
if(opt != nullptr) {
return opt;
}
}
}
return nullptr;
}
CLI11_NODISCARD CLI11_INLINE const Option *App::get_option_no_throw(std::string option_name) const noexcept {
for(const Option_p &opt : options_) {
if(opt->check_name(option_name)) {
return opt.get();
}
}
for(const auto &subc : subcommands_) {
// also check down into nameless subcommands
if(subc->get_name().empty()) {
auto *opt = subc->get_option_no_throw(option_name);
if(opt != nullptr) {
return opt;
}
}
}
return nullptr;
}
CLI11_NODISCARD CLI11_INLINE std::string App::get_display_name(bool with_aliases) const {
if(name_.empty()) {
return std::string("[Option Group: ") + get_group() + "]";
}
if(aliases_.empty() || !with_aliases) {
return name_;
}
std::string dispname = name_;
for(const auto &lalias : aliases_) {
dispname.push_back(',');
dispname.push_back(' ');
dispname.append(lalias);
}
return dispname;
}
CLI11_NODISCARD CLI11_INLINE bool App::check_name(std::string name_to_check) const {
std::string local_name = name_;
if(ignore_underscore_) {
local_name = detail::remove_underscore(name_);
name_to_check = detail::remove_underscore(name_to_check);
}
if(ignore_case_) {
local_name = detail::to_lower(name_);
name_to_check = detail::to_lower(name_to_check);
}
if(local_name == name_to_check) {
return true;
}
for(std::string les : aliases_) { // NOLINT(performance-for-range-copy)
if(ignore_underscore_) {
les = detail::remove_underscore(les);
}
if(ignore_case_) {
les = detail::to_lower(les);
}
if(les == name_to_check) {
return true;
}
}
return false;
}
CLI11_NODISCARD CLI11_INLINE std::vector<std::string> App::get_groups() const {
std::vector<std::string> groups;
for(const Option_p &opt : options_) {
// Add group if it is not already in there
if(std::find(groups.begin(), groups.end(), opt->get_group()) == groups.end()) {
groups.push_back(opt->get_group());
}
}
return groups;
}
CLI11_NODISCARD CLI11_INLINE std::vector<std::string> App::remaining(bool recurse) const {
std::vector<std::string> miss_list;
for(const std::pair<detail::Classifier, std::string> &miss : missing_) {
miss_list.push_back(std::get<1>(miss));
}
// Get from a subcommand that may allow extras
if(recurse) {
if(!allow_extras_) {
for(const auto &sub : subcommands_) {
if(sub->name_.empty() && !sub->missing_.empty()) {
for(const std::pair<detail::Classifier, std::string> &miss : sub->missing_) {
miss_list.push_back(std::get<1>(miss));
}
}
}
}
// Recurse into subcommands
for(const App *sub : parsed_subcommands_) {
std::vector<std::string> output = sub->remaining(recurse);
std::copy(std::begin(output), std::end(output), std::back_inserter(miss_list));
}
}
return miss_list;
}
CLI11_NODISCARD CLI11_INLINE std::vector<std::string> App::remaining_for_passthrough(bool recurse) const {
std::vector<std::string> miss_list = remaining(recurse);
std::reverse(std::begin(miss_list), std::end(miss_list));
return miss_list;
}
CLI11_NODISCARD CLI11_INLINE std::size_t App::remaining_size(bool recurse) const {
auto remaining_options = static_cast<std::size_t>(std::count_if(
std::begin(missing_), std::end(missing_), [](const std::pair<detail::Classifier, std::string> &val) {
return val.first != detail::Classifier::POSITIONAL_MARK;
}));
if(recurse) {
for(const App_p &sub : subcommands_) {
remaining_options += sub->remaining_size(recurse);
}
}
return remaining_options;
}
CLI11_INLINE void App::_validate() const {
// count the number of positional only args
auto pcount = std::count_if(std::begin(options_), std::end(options_), [](const Option_p &opt) {
return opt->get_items_expected_max() >= detail::expected_max_vector_size && !opt->nonpositional();
});
if(pcount > 1) {
auto pcount_req = std::count_if(std::begin(options_), std::end(options_), [](const Option_p &opt) {
return opt->get_items_expected_max() >= detail::expected_max_vector_size && !opt->nonpositional() &&
opt->get_required();
});
if(pcount - pcount_req > 1) {
throw InvalidError(name_);
}
}
std::size_t nameless_subs{0};
for(const App_p &app : subcommands_) {
app->_validate();
if(app->get_name().empty())
++nameless_subs;
}
if(require_option_min_ > 0) {
if(require_option_max_ > 0) {
if(require_option_max_ < require_option_min_) {
throw(InvalidError("Required min options greater than required max options", ExitCodes::InvalidError));
}
}
if(require_option_min_ > (options_.size() + nameless_subs)) {
throw(
InvalidError("Required min options greater than number of available options", ExitCodes::InvalidError));
}
}
}
CLI11_INLINE void App::_configure() {
if(default_startup == startup_mode::enabled) {
disabled_ = false;
} else if(default_startup == startup_mode::disabled) {
disabled_ = true;
}
for(const App_p &app : subcommands_) {
if(app->has_automatic_name_) {
app->name_.clear();
}
if(app->name_.empty()) {
app->fallthrough_ = false; // make sure fallthrough_ is false to prevent infinite loop
app->prefix_command_ = false;
}
// make sure the parent is set to be this object in preparation for parse
app->parent_ = this;
app->_configure();
}
}
CLI11_INLINE void App::run_callback(bool final_mode, bool suppress_final_callback) {
pre_callback();
// in the main app if immediate_callback_ is set it runs the main callback before the used subcommands
if(!final_mode && parse_complete_callback_) {
parse_complete_callback_();
}
// run the callbacks for the received subcommands
for(App *subc : get_subcommands()) {
if(subc->parent_ == this) {
subc->run_callback(true, suppress_final_callback);
}
}
// now run callbacks for option_groups
for(auto &subc : subcommands_) {
if(subc->name_.empty() && subc->count_all() > 0) {
subc->run_callback(true, suppress_final_callback);
}
}
// finally run the main callback
if(final_callback_ && (parsed_ > 0) && (!suppress_final_callback)) {
if(!name_.empty() || count_all() > 0 || parent_ == nullptr) {
final_callback_();
}
}
}
CLI11_NODISCARD CLI11_INLINE bool App::_valid_subcommand(const std::string &current, bool ignore_used) const {
// Don't match if max has been reached - but still check parents
if(require_subcommand_max_ != 0 && parsed_subcommands_.size() >= require_subcommand_max_) {
return parent_ != nullptr && parent_->_valid_subcommand(current, ignore_used);
}
auto *com = _find_subcommand(current, true, ignore_used);
if(com != nullptr) {
return true;
}
// Check parent if exists, else return false
return parent_ != nullptr && parent_->_valid_subcommand(current, ignore_used);
}
CLI11_NODISCARD CLI11_INLINE detail::Classifier App::_recognize(const std::string &current,
bool ignore_used_subcommands) const {
std::string dummy1, dummy2;
if(current == "--")
return detail::Classifier::POSITIONAL_MARK;
if(_valid_subcommand(current, ignore_used_subcommands))
return detail::Classifier::SUBCOMMAND;
if(detail::split_long(current, dummy1, dummy2))
return detail::Classifier::LONG;
if(detail::split_short(current, dummy1, dummy2)) {
if(dummy1[0] >= '0' && dummy1[0] <= '9') {
if(get_option_no_throw(std::string{'-', dummy1[0]}) == nullptr) {
return detail::Classifier::NONE;
}
}
return detail::Classifier::SHORT;
}
if((allow_windows_style_options_) && (detail::split_windows_style(current, dummy1, dummy2)))
return detail::Classifier::WINDOWS_STYLE;
if((current == "++") && !name_.empty() && parent_ != nullptr)
return detail::Classifier::SUBCOMMAND_TERMINATOR;
auto dotloc = current.find_first_of('.');
if(dotloc != std::string::npos) {
auto *cm = _find_subcommand(current.substr(0, dotloc), true, ignore_used_subcommands);
if(cm != nullptr) {
auto res = cm->_recognize(current.substr(dotloc + 1), ignore_used_subcommands);
if(res == detail::Classifier::SUBCOMMAND) {
return res;
}
}
}
return detail::Classifier::NONE;
}
CLI11_INLINE bool App::_process_config_file(const std::string &config_file, bool throw_error) {
auto path_result = detail::check_path(config_file.c_str());
if(path_result == detail::path_type::file) {
try {
std::vector<ConfigItem> values = config_formatter_->from_file(config_file);
_parse_config(values);
return true;
} catch(const FileError &) {
if(throw_error) {
throw;
}
return false;
}
} else if(throw_error) {
throw FileError::Missing(config_file);
} else {
return false;
}
}
CLI11_INLINE void App::_process_config_file() {
if(config_ptr_ != nullptr) {
bool config_required = config_ptr_->get_required();
auto file_given = config_ptr_->count() > 0;
if(!(file_given || config_ptr_->envname_.empty())) {
std::string ename_string = detail::get_environment_value(config_ptr_->envname_);
if(!ename_string.empty()) {
config_ptr_->add_result(ename_string);
}
}
config_ptr_->run_callback();
auto config_files = config_ptr_->as<std::vector<std::string>>();
bool files_used{file_given};
if(config_files.empty() || config_files.front().empty()) {
if(config_required) {
throw FileError("config file is required but none was given");
}
return;
}
for(const auto &config_file : config_files) {
if(_process_config_file(config_file, config_required || file_given)) {
files_used = true;
}
}
if(!files_used) {
// this is done so the count shows as 0 if no callbacks were processed
config_ptr_->clear();
bool force = config_ptr_->force_callback_;
config_ptr_->force_callback_ = false;
config_ptr_->run_callback();
config_ptr_->force_callback_ = force;
}
}
}
CLI11_INLINE void App::_process_env() {
for(const Option_p &opt : options_) {
if(opt->count() == 0 && !opt->envname_.empty()) {
std::string ename_string = detail::get_environment_value(opt->envname_);
if(!ename_string.empty()) {
std::string result = ename_string;
result = opt->_validate(result, 0);
if(result.empty()) {
opt->add_result(ename_string);
}
}
}
}
for(App_p &sub : subcommands_) {
if(sub->get_name().empty() || (sub->count_all() > 0 && !sub->parse_complete_callback_)) {
// only process environment variables if the callback has actually been triggered already
sub->_process_env();
}
}
}
CLI11_INLINE void App::_process_callbacks() {
for(App_p &sub : subcommands_) {
// process the priority option_groups first
if(sub->get_name().empty() && sub->parse_complete_callback_) {
if(sub->count_all() > 0) {
sub->_process_callbacks();
sub->run_callback();
}
}
}
for(const Option_p &opt : options_) {
if((*opt) && !opt->get_callback_run()) {
opt->run_callback();
}
}
for(App_p &sub : subcommands_) {
if(!sub->parse_complete_callback_) {
sub->_process_callbacks();
}
}
}
CLI11_INLINE void App::_process_help_flags(bool trigger_help, bool trigger_all_help) const {
const Option *help_ptr = get_help_ptr();
const Option *help_all_ptr = get_help_all_ptr();
if(help_ptr != nullptr && help_ptr->count() > 0)
trigger_help = true;
if(help_all_ptr != nullptr && help_all_ptr->count() > 0)
trigger_all_help = true;
// If there were parsed subcommands, call those. First subcommand wins if there are multiple ones.
if(!parsed_subcommands_.empty()) {
for(const App *sub : parsed_subcommands_)
sub->_process_help_flags(trigger_help, trigger_all_help);
// Only the final subcommand should call for help. All help wins over help.
} else if(trigger_all_help) {
throw CallForAllHelp();
} else if(trigger_help) {
throw CallForHelp();
}
}
CLI11_INLINE void App::_process_requirements() {
// check excludes
bool excluded{false};
std::string excluder;
for(const auto &opt : exclude_options_) {
if(opt->count() > 0) {
excluded = true;
excluder = opt->get_name();
}
}
for(const auto &subc : exclude_subcommands_) {
if(subc->count_all() > 0) {
excluded = true;
excluder = subc->get_display_name();
}
}
if(excluded) {
if(count_all() > 0) {
throw ExcludesError(get_display_name(), excluder);
}
// if we are excluded but didn't receive anything, just return
return;
}
// check excludes
bool missing_needed{false};
std::string missing_need;
for(const auto &opt : need_options_) {
if(opt->count() == 0) {
missing_needed = true;
missing_need = opt->get_name();
}
}
for(const auto &subc : need_subcommands_) {
if(subc->count_all() == 0) {
missing_needed = true;
missing_need = subc->get_display_name();
}
}
if(missing_needed) {
if(count_all() > 0) {
throw RequiresError(get_display_name(), missing_need);
}
// if we missing something but didn't have any options, just return
return;
}
std::size_t used_options = 0;
for(const Option_p &opt : options_) {
if(opt->count() != 0) {
++used_options;
}
// Required but empty
if(opt->get_required() && opt->count() == 0) {
throw RequiredError(opt->get_name());
}
// Requires
for(const Option *opt_req : opt->needs_)
if(opt->count() > 0 && opt_req->count() == 0)
throw RequiresError(opt->get_name(), opt_req->get_name());
// Excludes
for(const Option *opt_ex : opt->excludes_)
if(opt->count() > 0 && opt_ex->count() != 0)
throw ExcludesError(opt->get_name(), opt_ex->get_name());
}
// check for the required number of subcommands
if(require_subcommand_min_ > 0) {
auto selected_subcommands = get_subcommands();
if(require_subcommand_min_ > selected_subcommands.size())
throw RequiredError::Subcommand(require_subcommand_min_);
}
// Max error cannot occur, the extra subcommand will parse as an ExtrasError or a remaining item.
// run this loop to check how many unnamed subcommands were actually used since they are considered options
// from the perspective of an App
for(App_p &sub : subcommands_) {
if(sub->disabled_)
continue;
if(sub->name_.empty() && sub->count_all() > 0) {
++used_options;
}
}
if(require_option_min_ > used_options || (require_option_max_ > 0 && require_option_max_ < used_options)) {
auto option_list = detail::join(options_, [this](const Option_p &ptr) {
if(ptr.get() == help_ptr_ || ptr.get() == help_all_ptr_) {
return std::string{};
}
return ptr->get_name(false, true);
});
auto subc_list = get_subcommands([](App *app) { return ((app->get_name().empty()) && (!app->disabled_)); });
if(!subc_list.empty()) {
option_list += "," + detail::join(subc_list, [](const App *app) { return app->get_display_name(); });
}
throw RequiredError::Option(require_option_min_, require_option_max_, used_options, option_list);
}
// now process the requirements for subcommands if needed
for(App_p &sub : subcommands_) {
if(sub->disabled_)
continue;
if(sub->name_.empty() && sub->required_ == false) {
if(sub->count_all() == 0) {
if(require_option_min_ > 0 && require_option_min_ <= used_options) {
continue;
// if we have met the requirement and there is nothing in this option group skip checking
// requirements
}
if(require_option_max_ > 0 && used_options >= require_option_min_) {
continue;
// if we have met the requirement and there is nothing in this option group skip checking
// requirements
}
}
}
if(sub->count() > 0 || sub->name_.empty()) {
sub->_process_requirements();
}
if(sub->required_ && sub->count_all() == 0) {
throw(CLI::RequiredError(sub->get_display_name()));
}
}
}
CLI11_INLINE void App::_process() {
try {
// the config file might generate a FileError but that should not be processed until later in the process
// to allow for help, version and other errors to generate first.
_process_config_file();
// process env shouldn't throw but no reason to process it if config generated an error
_process_env();
} catch(const CLI::FileError &) {
// callbacks and help_flags can generate exceptions which should take priority
// over the config file error if one exists.
_process_callbacks();
_process_help_flags();
throw;
}
_process_callbacks();
_process_help_flags();
_process_requirements();
}
CLI11_INLINE void App::_process_extras() {
if(!(allow_extras_ || prefix_command_)) {
std::size_t num_left_over = remaining_size();
if(num_left_over > 0) {
throw ExtrasError(name_, remaining(false));
}
}
for(App_p &sub : subcommands_) {
if(sub->count() > 0)
sub->_process_extras();
}
}
CLI11_INLINE void App::_process_extras(std::vector<std::string> &args) {
if(!(allow_extras_ || prefix_command_)) {
std::size_t num_left_over = remaining_size();
if(num_left_over > 0) {
args = remaining(false);
throw ExtrasError(name_, args);
}
}
for(App_p &sub : subcommands_) {
if(sub->count() > 0)
sub->_process_extras(args);
}
}
CLI11_INLINE void App::increment_parsed() {
++parsed_;
for(App_p &sub : subcommands_) {
if(sub->get_name().empty())
sub->increment_parsed();
}
}
CLI11_INLINE void App::_parse(std::vector<std::string> &args) {
increment_parsed();
_trigger_pre_parse(args.size());
bool positional_only = false;
while(!args.empty()) {
if(!_parse_single(args, positional_only)) {
break;
}
}
if(parent_ == nullptr) {
_process();
// Throw error if any items are left over (depending on settings)
_process_extras(args);
// Convert missing (pairs) to extras (string only) ready for processing in another app
args = remaining_for_passthrough(false);
} else if(parse_complete_callback_) {
_process_env();
_process_callbacks();
_process_help_flags();
_process_requirements();
run_callback(false, true);
}
}
CLI11_INLINE void App::_parse(std::vector<std::string> &&args) {
// this can only be called by the top level in which case parent == nullptr by definition
// operation is simplified
increment_parsed();
_trigger_pre_parse(args.size());
bool positional_only = false;
while(!args.empty()) {
_parse_single(args, positional_only);
}
_process();
// Throw error if any items are left over (depending on settings)
_process_extras();
}
CLI11_INLINE void App::_parse_stream(std::istream &input) {
auto values = config_formatter_->from_config(input);
_parse_config(values);
increment_parsed();
_trigger_pre_parse(values.size());
_process();
// Throw error if any items are left over (depending on settings)
_process_extras();
}
CLI11_INLINE void App::_parse_config(const std::vector<ConfigItem> &args) {
for(const ConfigItem &item : args) {
if(!_parse_single_config(item) && allow_config_extras_ == config_extras_mode::error)
throw ConfigError::Extras(item.fullname());
}
}
CLI11_INLINE bool App::_parse_single_config(const ConfigItem &item, std::size_t level) {
if(level < item.parents.size()) {
auto *subcom = get_subcommand_no_throw(item.parents.at(level));
return (subcom != nullptr) ? subcom->_parse_single_config(item, level + 1) : false;
}
// check for section open
if(item.name == "++") {
if(configurable_) {
increment_parsed();
_trigger_pre_parse(2);
if(parent_ != nullptr) {
parent_->parsed_subcommands_.push_back(this);
}
}
return true;
}
// check for section close
if(item.name == "--") {
if(configurable_ && parse_complete_callback_) {
_process_callbacks();
_process_requirements();
run_callback();
}
return true;
}
Option *op = get_option_no_throw("--" + item.name);
if(op == nullptr) {
if(item.name.size() == 1) {
op = get_option_no_throw("-" + item.name);
}
if(op == nullptr) {
op = get_option_no_throw(item.name);
}
}
if(op == nullptr) {
// If the option was not present
if(get_allow_config_extras() == config_extras_mode::capture) {
// Should we worry about classifying the extras properly?
missing_.emplace_back(detail::Classifier::NONE, item.fullname());
for(const auto &input : item.inputs) {
missing_.emplace_back(detail::Classifier::NONE, input);
}
}
return false;
}
if(!op->get_configurable()) {
if(get_allow_config_extras() == config_extras_mode::ignore_all) {
return false;
}
throw ConfigError::NotConfigurable(item.fullname());
}
if(op->empty()) {
if(op->get_expected_min() == 0) {
if(item.inputs.size() <= 1) {
// Flag parsing
auto res = config_formatter_->to_flag(item);
bool converted{false};
if(op->get_disable_flag_override()) {
auto val = detail::to_flag_value(res);
if(val == 1) {
res = op->get_flag_value(item.name, "{}");
converted = true;
}
}
if(!converted) {
errno = 0;
res = op->get_flag_value(item.name, res);
}
op->add_result(res);
return true;
}
if(static_cast<int>(item.inputs.size()) > op->get_items_expected_max() &&
op->get_multi_option_policy() != MultiOptionPolicy::TakeAll) {
if(op->get_items_expected_max() > 1) {
throw ArgumentMismatch::AtMost(item.fullname(), op->get_items_expected_max(), item.inputs.size());
}
if(!op->get_disable_flag_override()) {
throw ConversionError::TooManyInputsFlag(item.fullname());
}
// if the disable flag override is set then we must have the flag values match a known flag value
// this is true regardless of the output value, so an array input is possible and must be accounted for
for(const auto &res : item.inputs) {
bool valid_value{false};
if(op->default_flag_values_.empty()) {
if(res == "true" || res == "false" || res == "1" || res == "0") {
valid_value = true;
}
} else {
for(const auto &valid_res : op->default_flag_values_) {
if(valid_res.second == res) {
valid_value = true;
break;
}
}
}
if(valid_value) {
op->add_result(res);
} else {
throw InvalidError("invalid flag argument given");
}
}
return true;
}
}
op->add_result(item.inputs);
op->run_callback();
}
return true;
}
CLI11_INLINE bool App::_parse_single(std::vector<std::string> &args, bool &positional_only) {
bool retval = true;
detail::Classifier classifier = positional_only ? detail::Classifier::NONE : _recognize(args.back());
switch(classifier) {
case detail::Classifier::POSITIONAL_MARK:
args.pop_back();
positional_only = true;
if((!_has_remaining_positionals()) && (parent_ != nullptr)) {
retval = false;
} else {
_move_to_missing(classifier, "--");
}
break;
case detail::Classifier::SUBCOMMAND_TERMINATOR:
// treat this like a positional mark if in the parent app
args.pop_back();
retval = false;
break;
case detail::Classifier::SUBCOMMAND:
retval = _parse_subcommand(args);
break;
case detail::Classifier::LONG:
case detail::Classifier::SHORT:
case detail::Classifier::WINDOWS_STYLE:
// If already parsed a subcommand, don't accept options_
retval = _parse_arg(args, classifier, false);
break;
case detail::Classifier::NONE:
// Probably a positional or something for a parent (sub)command
retval = _parse_positional(args, false);
if(retval && positionals_at_end_) {
positional_only = true;
}
break;
// LCOV_EXCL_START
default:
throw HorribleError("unrecognized classifier (you should not see this!)");
// LCOV_EXCL_STOP
}
return retval;
}
CLI11_NODISCARD CLI11_INLINE std::size_t App::_count_remaining_positionals(bool required_only) const {
std::size_t retval = 0;
for(const Option_p &opt : options_) {
if(opt->get_positional() && (!required_only || opt->get_required())) {
if(opt->get_items_expected_min() > 0 && static_cast<int>(opt->count()) < opt->get_items_expected_min()) {
retval += static_cast<std::size_t>(opt->get_items_expected_min()) - opt->count();
}
}
}
return retval;
}
CLI11_NODISCARD CLI11_INLINE bool App::_has_remaining_positionals() const {
for(const Option_p &opt : options_) {
if(opt->get_positional() && ((static_cast<int>(opt->count()) < opt->get_items_expected_min()))) {
return true;
}
}
return false;
}
CLI11_INLINE bool App::_parse_positional(std::vector<std::string> &args, bool haltOnSubcommand) {
const std::string &positional = args.back();
Option *posOpt{nullptr};
if(positionals_at_end_) {
// deal with the case of required arguments at the end which should take precedence over other arguments
auto arg_rem = args.size();
auto remreq = _count_remaining_positionals(true);
if(arg_rem <= remreq) {
for(const Option_p &opt : options_) {
if(opt->get_positional() && opt->required_) {
if(static_cast<int>(opt->count()) < opt->get_items_expected_min()) {
if(validate_positionals_) {
std::string pos = positional;
pos = opt->_validate(pos, 0);
if(!pos.empty()) {
continue;
}
}
posOpt = opt.get();
break;
}
}
}
}
}
if(posOpt == nullptr) {
for(const Option_p &opt : options_) {
// Eat options, one by one, until done
if(opt->get_positional() &&
(static_cast<int>(opt->count()) < opt->get_items_expected_min() || opt->get_allow_extra_args())) {
if(validate_positionals_) {
std::string pos = positional;
pos = opt->_validate(pos, 0);
if(!pos.empty()) {
continue;
}
}
posOpt = opt.get();
break;
}
}
}
if(posOpt != nullptr) {
parse_order_.push_back(posOpt);
if(posOpt->get_inject_separator()) {
if(!posOpt->results().empty() && !posOpt->results().back().empty()) {
posOpt->add_result(std::string{});
}
}
if(posOpt->get_trigger_on_parse() && posOpt->current_option_state_ == Option::option_state::callback_run) {
posOpt->clear();
}
posOpt->add_result(positional);
if(posOpt->get_trigger_on_parse()) {
posOpt->run_callback();
}
args.pop_back();
return true;
}
for(auto &subc : subcommands_) {
if((subc->name_.empty()) && (!subc->disabled_)) {
if(subc->_parse_positional(args, false)) {
if(!subc->pre_parse_called_) {
subc->_trigger_pre_parse(args.size());
}
return true;
}
}
}
// let the parent deal with it if possible
if(parent_ != nullptr && fallthrough_)
return _get_fallthrough_parent()->_parse_positional(args, static_cast<bool>(parse_complete_callback_));
/// Try to find a local subcommand that is repeated
auto *com = _find_subcommand(args.back(), true, false);
if(com != nullptr && (require_subcommand_max_ == 0 || require_subcommand_max_ > parsed_subcommands_.size())) {
if(haltOnSubcommand) {
return false;
}
args.pop_back();
com->_parse(args);
return true;
}
/// now try one last gasp at subcommands that have been executed before, go to root app and try to find a
/// subcommand in a broader way, if one exists let the parent deal with it
auto *parent_app = (parent_ != nullptr) ? _get_fallthrough_parent() : this;
com = parent_app->_find_subcommand(args.back(), true, false);
if(com != nullptr && (com->parent_->require_subcommand_max_ == 0 ||
com->parent_->require_subcommand_max_ > com->parent_->parsed_subcommands_.size())) {
return false;
}
if(positionals_at_end_) {
throw CLI::ExtrasError(name_, args);
}
/// If this is an option group don't deal with it
if(parent_ != nullptr && name_.empty()) {
return false;
}
/// We are out of other options this goes to missing
_move_to_missing(detail::Classifier::NONE, positional);
args.pop_back();
if(prefix_command_) {
while(!args.empty()) {
_move_to_missing(detail::Classifier::NONE, args.back());
args.pop_back();
}
}
return true;
}
CLI11_NODISCARD CLI11_INLINE App *
App::_find_subcommand(const std::string &subc_name, bool ignore_disabled, bool ignore_used) const noexcept {
for(const App_p &com : subcommands_) {
if(com->disabled_ && ignore_disabled)
continue;
if(com->get_name().empty()) {
auto *subc = com->_find_subcommand(subc_name, ignore_disabled, ignore_used);
if(subc != nullptr) {
return subc;
}
}
if(com->check_name(subc_name)) {
if((!*com) || !ignore_used)
return com.get();
}
}
return nullptr;
}
CLI11_INLINE bool App::_parse_subcommand(std::vector<std::string> &args) {
if(_count_remaining_positionals(/* required */ true) > 0) {
_parse_positional(args, false);
return true;
}
auto *com = _find_subcommand(args.back(), true, true);
if(com == nullptr) {
// the main way to get here is using .notation
auto dotloc = args.back().find_first_of('.');
if(dotloc != std::string::npos) {
com = _find_subcommand(args.back().substr(0, dotloc), true, true);
if(com != nullptr) {
args.back() = args.back().substr(dotloc + 1);
args.push_back(com->get_display_name());
}
}
}
if(com != nullptr) {
args.pop_back();
if(!com->silent_) {
parsed_subcommands_.push_back(com);
}
com->_parse(args);
auto *parent_app = com->parent_;
while(parent_app != this) {
parent_app->_trigger_pre_parse(args.size());
if(!com->silent_) {
parent_app->parsed_subcommands_.push_back(com);
}
parent_app = parent_app->parent_;
}
return true;
}
if(parent_ == nullptr)
throw HorribleError("Subcommand " + args.back() + " missing");
return false;
}
CLI11_INLINE bool
App::_parse_arg(std::vector<std::string> &args, detail::Classifier current_type, bool local_processing_only) {
std::string current = args.back();
std::string arg_name;
std::string value;
std::string rest;
switch(current_type) {
case detail::Classifier::LONG:
if(!detail::split_long(current, arg_name, value))
throw HorribleError("Long parsed but missing (you should not see this):" + args.back());
break;
case detail::Classifier::SHORT:
if(!detail::split_short(current, arg_name, rest))
throw HorribleError("Short parsed but missing! You should not see this");
break;
case detail::Classifier::WINDOWS_STYLE:
if(!detail::split_windows_style(current, arg_name, value))
throw HorribleError("windows option parsed but missing! You should not see this");
break;
case detail::Classifier::SUBCOMMAND:
case detail::Classifier::SUBCOMMAND_TERMINATOR:
case detail::Classifier::POSITIONAL_MARK:
case detail::Classifier::NONE:
default:
throw HorribleError("parsing got called with invalid option! You should not see this");
}
auto op_ptr = std::find_if(std::begin(options_), std::end(options_), [arg_name, current_type](const Option_p &opt) {
if(current_type == detail::Classifier::LONG)
return opt->check_lname(arg_name);
if(current_type == detail::Classifier::SHORT)
return opt->check_sname(arg_name);
// this will only get called for detail::Classifier::WINDOWS_STYLE
return opt->check_lname(arg_name) || opt->check_sname(arg_name);
});
// Option not found
if(op_ptr == std::end(options_)) {
for(auto &subc : subcommands_) {
if(subc->name_.empty() && !subc->disabled_) {
if(subc->_parse_arg(args, current_type, local_processing_only)) {
if(!subc->pre_parse_called_) {
subc->_trigger_pre_parse(args.size());
}
return true;
}
}
}
// don't capture missing if this is a nameless subcommand and nameless subcommands can't fallthrough
if(parent_ != nullptr && name_.empty()) {
return false;
}
// now check for '.' notation of subcommands
auto dotloc = arg_name.find_first_of('.', 1);
if(dotloc != std::string::npos) {
// using dot notation is equivalent to single argument subcommand
auto *sub = _find_subcommand(arg_name.substr(0, dotloc), true, false);
if(sub != nullptr) {
auto v = args.back();
args.pop_back();
arg_name = arg_name.substr(dotloc + 1);
if(arg_name.size() > 1) {
args.push_back(std::string("--") + v.substr(dotloc + 3));
current_type = detail::Classifier::LONG;
} else {
auto nval = v.substr(dotloc + 2);
nval.front() = '-';
if(nval.size() > 2) {
// '=' not allowed in short form arguments
args.push_back(nval.substr(3));
nval.resize(2);
}
args.push_back(nval);
current_type = detail::Classifier::SHORT;
}
auto val = sub->_parse_arg(args, current_type, true);
if(val) {
if(!sub->silent_) {
parsed_subcommands_.push_back(sub);
}
// deal with preparsing
increment_parsed();
_trigger_pre_parse(args.size());
// run the parse complete callback since the subcommand processing is now complete
if(sub->parse_complete_callback_) {
sub->_process_env();
sub->_process_callbacks();
sub->_process_help_flags();
sub->_process_requirements();
sub->run_callback(false, true);
}
return true;
}
args.pop_back();
args.push_back(v);
}
}
if(local_processing_only) {
return false;
}
// If a subcommand, try the main command
if(parent_ != nullptr && fallthrough_)
return _get_fallthrough_parent()->_parse_arg(args, current_type, false);
// Otherwise, add to missing
args.pop_back();
_move_to_missing(current_type, current);
return true;
}
args.pop_back();
// Get a reference to the pointer to make syntax bearable
Option_p &op = *op_ptr;
/// if we require a separator add it here
if(op->get_inject_separator()) {
if(!op->results().empty() && !op->results().back().empty()) {
op->add_result(std::string{});
}
}
if(op->get_trigger_on_parse() && op->current_option_state_ == Option::option_state::callback_run) {
op->clear();
}
int min_num = (std::min)(op->get_type_size_min(), op->get_items_expected_min());
int max_num = op->get_items_expected_max();
// check container like options to limit the argument size to a single type if the allow_extra_flags argument is
// set. 16 is somewhat arbitrary (needs to be at least 4)
if(max_num >= detail::expected_max_vector_size / 16 && !op->get_allow_extra_args()) {
auto tmax = op->get_type_size_max();
max_num = detail::checked_multiply(tmax, op->get_expected_min()) ? tmax : detail::expected_max_vector_size;
}
// Make sure we always eat the minimum for unlimited vectors
int collected = 0; // total number of arguments collected
int result_count = 0; // local variable for number of results in a single arg string
// deal with purely flag like things
if(max_num == 0) {
auto res = op->get_flag_value(arg_name, value);
op->add_result(res);
parse_order_.push_back(op.get());
} else if(!value.empty()) { // --this=value
op->add_result(value, result_count);
parse_order_.push_back(op.get());
collected += result_count;
// -Trest
} else if(!rest.empty()) {
op->add_result(rest, result_count);
parse_order_.push_back(op.get());
rest = "";
collected += result_count;
}
// gather the minimum number of arguments
while(min_num > collected && !args.empty()) {
std::string current_ = args.back();
args.pop_back();
op->add_result(current_, result_count);
parse_order_.push_back(op.get());
collected += result_count;
}
if(min_num > collected) { // if we have run out of arguments and the minimum was not met
throw ArgumentMismatch::TypedAtLeast(op->get_name(), min_num, op->get_type_name());
}
// now check for optional arguments
if(max_num > collected || op->get_allow_extra_args()) { // we allow optional arguments
auto remreqpos = _count_remaining_positionals(true);
// we have met the minimum now optionally check up to the maximum
while((collected < max_num || op->get_allow_extra_args()) && !args.empty() &&
_recognize(args.back(), false) == detail::Classifier::NONE) {
// If any required positionals remain, don't keep eating
if(remreqpos >= args.size()) {
break;
}
if(validate_optional_arguments_) {
std::string arg = args.back();
arg = op->_validate(arg, 0);
if(!arg.empty()) {
break;
}
}
op->add_result(args.back(), result_count);
parse_order_.push_back(op.get());
args.pop_back();
collected += result_count;
}
// Allow -- to end an unlimited list and "eat" it
if(!args.empty() && _recognize(args.back()) == detail::Classifier::POSITIONAL_MARK)
args.pop_back();
// optional flag that didn't receive anything now get the default value
if(min_num == 0 && max_num > 0 && collected == 0) {
auto res = op->get_flag_value(arg_name, std::string{});
op->add_result(res);
parse_order_.push_back(op.get());
}
}
// if we only partially completed a type then add an empty string if allowed for later processing
if(min_num > 0 && (collected % op->get_type_size_max()) != 0) {
if(op->get_type_size_max() != op->get_type_size_min()) {
op->add_result(std::string{});
} else {
throw ArgumentMismatch::PartialType(op->get_name(), op->get_type_size_min(), op->get_type_name());
}
}
if(op->get_trigger_on_parse()) {
op->run_callback();
}
if(!rest.empty()) {
rest = "-" + rest;
args.push_back(rest);
}
return true;
}
CLI11_INLINE void App::_trigger_pre_parse(std::size_t remaining_args) {
if(!pre_parse_called_) {
pre_parse_called_ = true;
if(pre_parse_callback_) {
pre_parse_callback_(remaining_args);
}
} else if(immediate_callback_) {
if(!name_.empty()) {
auto pcnt = parsed_;
missing_t extras = std::move(missing_);
clear();
parsed_ = pcnt;
pre_parse_called_ = true;
missing_ = std::move(extras);
}
}
}
CLI11_INLINE App *App::_get_fallthrough_parent() {
if(parent_ == nullptr) {
throw(HorribleError("No Valid parent"));
}
auto *fallthrough_parent = parent_;
while((fallthrough_parent->parent_ != nullptr) && (fallthrough_parent->get_name().empty())) {
fallthrough_parent = fallthrough_parent->parent_;
}
return fallthrough_parent;
}
CLI11_NODISCARD CLI11_INLINE const std::string &App::_compare_subcommand_names(const App &subcom,
const App &base) const {
static const std::string estring;
if(subcom.disabled_) {
return estring;
}
for(const auto &subc : base.subcommands_) {
if(subc.get() != &subcom) {
if(subc->disabled_) {
continue;
}
if(!subcom.get_name().empty()) {
if(subc->check_name(subcom.get_name())) {
return subcom.get_name();
}
}
if(!subc->get_name().empty()) {
if(subcom.check_name(subc->get_name())) {
return subc->get_name();
}
}
for(const auto &les : subcom.aliases_) {
if(subc->check_name(les)) {
return les;
}
}
// this loop is needed in case of ignore_underscore or ignore_case on one but not the other
for(const auto &les : subc->aliases_) {
if(subcom.check_name(les)) {
return les;
}
}
// if the subcommand is an option group we need to check deeper
if(subc->get_name().empty()) {
const auto &cmpres = _compare_subcommand_names(subcom, *subc);
if(!cmpres.empty()) {
return cmpres;
}
}
// if the test subcommand is an option group we need to check deeper
if(subcom.get_name().empty()) {
const auto &cmpres = _compare_subcommand_names(*subc, subcom);
if(!cmpres.empty()) {
return cmpres;
}
}
}
}
return estring;
}
CLI11_INLINE void App::_move_to_missing(detail::Classifier val_type, const std::string &val) {
if(allow_extras_ || subcommands_.empty()) {
missing_.emplace_back(val_type, val);
return;
}
// allow extra arguments to be places in an option group if it is allowed there
for(auto &subc : subcommands_) {
if(subc->name_.empty() && subc->allow_extras_) {
subc->missing_.emplace_back(val_type, val);
return;
}
}
// if we haven't found any place to put them yet put them in missing
missing_.emplace_back(val_type, val);
}
CLI11_INLINE void App::_move_option(Option *opt, App *app) {
if(opt == nullptr) {
throw OptionNotFound("the option is NULL");
}
// verify that the give app is actually a subcommand
bool found = false;
for(auto &subc : subcommands_) {
if(app == subc.get()) {
found = true;
}
}
if(!found) {
throw OptionNotFound("The Given app is not a subcommand");
}
if((help_ptr_ == opt) || (help_all_ptr_ == opt))
throw OptionAlreadyAdded("cannot move help options");
if(config_ptr_ == opt)
throw OptionAlreadyAdded("cannot move config file options");
auto iterator =
std::find_if(std::begin(options_), std::end(options_), [opt](const Option_p &v) { return v.get() == opt; });
if(iterator != std::end(options_)) {
const auto &opt_p = *iterator;
if(std::find_if(std::begin(app->options_), std::end(app->options_), [&opt_p](const Option_p &v) {
return (*v == *opt_p);
}) == std::end(app->options_)) {
// only erase after the insertion was successful
app->options_.push_back(std::move(*iterator));
options_.erase(iterator);
} else {
throw OptionAlreadyAdded("option was not located: " + opt->get_name());
}
} else {
throw OptionNotFound("could not locate the given Option");
}
}
CLI11_INLINE void TriggerOn(App *trigger_app, App *app_to_enable) {
app_to_enable->enabled_by_default(false);
app_to_enable->disabled_by_default();
trigger_app->preparse_callback([app_to_enable](std::size_t) { app_to_enable->disabled(false); });
}
CLI11_INLINE void TriggerOn(App *trigger_app, std::vector<App *> apps_to_enable) {
for(auto &app : apps_to_enable) {
app->enabled_by_default(false);
app->disabled_by_default();
}
trigger_app->preparse_callback([apps_to_enable](std::size_t) {
for(const auto &app : apps_to_enable) {
app->disabled(false);
}
});
}
CLI11_INLINE void TriggerOff(App *trigger_app, App *app_to_enable) {
app_to_enable->disabled_by_default(false);
app_to_enable->enabled_by_default();
trigger_app->preparse_callback([app_to_enable](std::size_t) { app_to_enable->disabled(); });
}
CLI11_INLINE void TriggerOff(App *trigger_app, std::vector<App *> apps_to_enable) {
for(auto &app : apps_to_enable) {
app->disabled_by_default(false);
app->enabled_by_default();
}
trigger_app->preparse_callback([apps_to_enable](std::size_t) {
for(const auto &app : apps_to_enable) {
app->disabled();
}
});
}
CLI11_INLINE void deprecate_option(Option *opt, const std::string &replacement) {
Validator deprecate_warning{[opt, replacement](std::string &) {
std::cout << opt->get_name() << " is deprecated please use '" << replacement
<< "' instead\n";
return std::string();
},
"DEPRECATED"};
deprecate_warning.application_index(0);
opt->check(deprecate_warning);
if(!replacement.empty()) {
opt->description(opt->get_description() + " DEPRECATED: please use '" + replacement + "' instead");
}
}
CLI11_INLINE void retire_option(App *app, Option *opt) {
App temp;
auto *option_copy = temp.add_option(opt->get_name(false, true))
->type_size(opt->get_type_size_min(), opt->get_type_size_max())
->expected(opt->get_expected_min(), opt->get_expected_max())
->allow_extra_args(opt->get_allow_extra_args());
app->remove_option(opt);
auto *opt2 = app->add_option(option_copy->get_name(false, true), "option has been retired and has no effect");
opt2->type_name("RETIRED")
->default_str("RETIRED")
->type_size(option_copy->get_type_size_min(), option_copy->get_type_size_max())
->expected(option_copy->get_expected_min(), option_copy->get_expected_max())
->allow_extra_args(option_copy->get_allow_extra_args());
Validator retired_warning{[opt2](std::string &) {
std::cout << "WARNING " << opt2->get_name() << " is retired and has no effect\n";
return std::string();
},
""};
retired_warning.application_index(0);
opt2->check(retired_warning);
}
CLI11_INLINE void retire_option(App &app, Option *opt) { retire_option(&app, opt); }
CLI11_INLINE void retire_option(App *app, const std::string &option_name) {
auto *opt = app->get_option_no_throw(option_name);
if(opt != nullptr) {
retire_option(app, opt);
return;
}
auto *opt2 = app->add_option(option_name, "option has been retired and has no effect")
->type_name("RETIRED")
->expected(0, 1)
->default_str("RETIRED");
Validator retired_warning{[opt2](std::string &) {
std::cout << "WARNING " << opt2->get_name() << " is retired and has no effect\n";
return std::string();
},
""};
retired_warning.application_index(0);
opt2->check(retired_warning);
}
CLI11_INLINE void retire_option(App &app, const std::string &option_name) { retire_option(&app, option_name); }
namespace FailureMessage {
CLI11_INLINE std::string simple(const App *app, const Error &e) {
std::string header = std::string(e.what()) + "\n";
std::vector<std::string> names;
// Collect names
if(app->get_help_ptr() != nullptr)
names.push_back(app->get_help_ptr()->get_name());
if(app->get_help_all_ptr() != nullptr)
names.push_back(app->get_help_all_ptr()->get_name());
// If any names found, suggest those
if(!names.empty())
header += "Run with " + detail::join(names, " or ") + " for more information.\n";
return header;
}
CLI11_INLINE std::string help(const App *app, const Error &e) {
std::string header = std::string("ERROR: ") + e.get_name() + ": " + e.what() + "\n";
header += app->help();
return header;
}
} // namespace FailureMessage
namespace detail {
std::string convert_arg_for_ini(const std::string &arg,
char stringQuote = '"',
char literalQuote = '\'',
bool disable_multi_line = false);
/// Comma separated join, adds quotes if needed
std::string ini_join(const std::vector<std::string> &args,
char sepChar = ',',
char arrayStart = '[',
char arrayEnd = ']',
char stringQuote = '"',
char literalQuote = '\'');
void clean_name_string(std::string &name, const std::string &keyChars);
std::vector<std::string> generate_parents(const std::string &section, std::string &name, char parentSeparator);
/// assuming non default segments do a check on the close and open of the segments in a configItem structure
void checkParentSegments(std::vector<ConfigItem> &output, const std::string &currentSection, char parentSeparator);
} // namespace detail
static constexpr auto multiline_literal_quote = R"(''')";
static constexpr auto multiline_string_quote = R"(""")";
namespace detail {
CLI11_INLINE bool is_printable(const std::string &test_string) {
return std::all_of(test_string.begin(), test_string.end(), [](char x) {
return (isprint(static_cast<unsigned char>(x)) != 0 || x == '\n' || x == '\t');
});
}
CLI11_INLINE std::string
convert_arg_for_ini(const std::string &arg, char stringQuote, char literalQuote, bool disable_multi_line) {
if(arg.empty()) {
return std::string(2, stringQuote);
}
// some specifically supported strings
if(arg == "true" || arg == "false" || arg == "nan" || arg == "inf") {
return arg;
}
// floating point conversion can convert some hex codes, but don't try that here
if(arg.compare(0, 2, "0x") != 0 && arg.compare(0, 2, "0X") != 0) {
using CLI::detail::lexical_cast;
double val = 0.0;
if(lexical_cast(arg, val)) {
if(arg.find_first_not_of("0123456789.-+eE") == std::string::npos) {
return arg;
}
}
}
// just quote a single non numeric character
if(arg.size() == 1) {
if(isprint(static_cast<unsigned char>(arg.front())) == 0) {
return binary_escape_string(arg);
}
if(arg == "'") {
return std::string(1, stringQuote) + "'" + stringQuote;
}
return std::string(1, literalQuote) + arg + literalQuote;
}
// handle hex, binary or octal arguments
if(arg.front() == '0') {
if(arg[1] == 'x') {
if(std::all_of(arg.begin() + 2, arg.end(), [](char x) {
return (x >= '0' && x <= '9') || (x >= 'A' && x <= 'F') || (x >= 'a' && x <= 'f');
})) {
return arg;
}
} else if(arg[1] == 'o') {
if(std::all_of(arg.begin() + 2, arg.end(), [](char x) { return (x >= '0' && x <= '7'); })) {
return arg;
}
} else if(arg[1] == 'b') {
if(std::all_of(arg.begin() + 2, arg.end(), [](char x) { return (x == '0' || x == '1'); })) {
return arg;
}
}
}
if(!is_printable(arg)) {
return binary_escape_string(arg);
}
if(detail::has_escapable_character(arg)) {
if(arg.size() > 100 && !disable_multi_line) {
return std::string(multiline_literal_quote) + arg + multiline_literal_quote;
}
return std::string(1, stringQuote) + detail::add_escaped_characters(arg) + stringQuote;
}
return std::string(1, stringQuote) + arg + stringQuote;
}
CLI11_INLINE std::string ini_join(const std::vector<std::string> &args,
char sepChar,
char arrayStart,
char arrayEnd,
char stringQuote,
char literalQuote) {
bool disable_multi_line{false};
std::string joined;
if(args.size() > 1 && arrayStart != '\0') {
joined.push_back(arrayStart);
disable_multi_line = true;
}
std::size_t start = 0;
for(const auto &arg : args) {
if(start++ > 0) {
joined.push_back(sepChar);
if(!std::isspace<char>(sepChar, std::locale())) {
joined.push_back(' ');
}
}
joined.append(convert_arg_for_ini(arg, stringQuote, literalQuote, disable_multi_line));
}
if(args.size() > 1 && arrayEnd != '\0') {
joined.push_back(arrayEnd);
}
return joined;
}
CLI11_INLINE std::vector<std::string>
generate_parents(const std::string &section, std::string &name, char parentSeparator) {
std::vector<std::string> parents;
if(detail::to_lower(section) != "default") {
if(section.find(parentSeparator) != std::string::npos) {
parents = detail::split_up(section, parentSeparator);
} else {
parents = {section};
}
}
if(name.find(parentSeparator) != std::string::npos) {
std::vector<std::string> plist = detail::split_up(name, parentSeparator);
name = plist.back();
plist.pop_back();
parents.insert(parents.end(), plist.begin(), plist.end());
}
// clean up quotes on the parents
try {
detail::remove_quotes(parents);
} catch(const std::invalid_argument &iarg) {
throw CLI::ParseError(iarg.what(), CLI::ExitCodes::InvalidError);
}
return parents;
}
CLI11_INLINE void
checkParentSegments(std::vector<ConfigItem> &output, const std::string &currentSection, char parentSeparator) {
std::string estring;
auto parents = detail::generate_parents(currentSection, estring, parentSeparator);
if(!output.empty() && output.back().name == "--") {
std::size_t msize = (parents.size() > 1U) ? parents.size() : 2;
while(output.back().parents.size() >= msize) {
output.push_back(output.back());
output.back().parents.pop_back();
}
if(parents.size() > 1) {
std::size_t common = 0;
std::size_t mpair = (std::min)(output.back().parents.size(), parents.size() - 1);
for(std::size_t ii = 0; ii < mpair; ++ii) {
if(output.back().parents[ii] != parents[ii]) {
break;
}
++common;
}
if(common == mpair) {
output.pop_back();
} else {
while(output.back().parents.size() > common + 1) {
output.push_back(output.back());
output.back().parents.pop_back();
}
}
for(std::size_t ii = common; ii < parents.size() - 1; ++ii) {
output.emplace_back();
output.back().parents.assign(parents.begin(), parents.begin() + static_cast<std::ptrdiff_t>(ii) + 1);
output.back().name = "++";
}
}
} else if(parents.size() > 1) {
for(std::size_t ii = 0; ii < parents.size() - 1; ++ii) {
output.emplace_back();
output.back().parents.assign(parents.begin(), parents.begin() + static_cast<std::ptrdiff_t>(ii) + 1);
output.back().name = "++";
}
}
// insert a section end which is just an empty items_buffer
output.emplace_back();
output.back().parents = std::move(parents);
output.back().name = "++";
}
/// @brief checks if a string represents a multiline comment
CLI11_INLINE bool hasMLString(std::string const &fullString, char check) {
if(fullString.length() < 3) {
return false;
}
auto it = fullString.rbegin();
return (*it == check) && (*(it + 1) == check) && (*(it + 2) == check);
}
} // namespace detail
inline std::vector<ConfigItem> ConfigBase::from_config(std::istream &input) const {
std::string line;
std::string buffer;
std::string currentSection = "default";
std::string previousSection = "default";
std::vector<ConfigItem> output;
bool isDefaultArray = (arrayStart == '[' && arrayEnd == ']' && arraySeparator == ',');
bool isINIArray = (arrayStart == '\0' || arrayStart == ' ') && arrayStart == arrayEnd;
bool inSection{false};
bool inMLineComment{false};
bool inMLineValue{false};
char aStart = (isINIArray) ? '[' : arrayStart;
char aEnd = (isINIArray) ? ']' : arrayEnd;
char aSep = (isINIArray && arraySeparator == ' ') ? ',' : arraySeparator;
int currentSectionIndex{0};
std::string line_sep_chars{parentSeparatorChar, commentChar, valueDelimiter};
while(getline(input, buffer)) {
std::vector<std::string> items_buffer;
std::string name;
line = detail::trim_copy(buffer);
std::size_t len = line.length();
// lines have to be at least 3 characters to have any meaning to CLI just skip the rest
if(len < 3) {
continue;
}
if(line.compare(0, 3, multiline_string_quote) == 0 || line.compare(0, 3, multiline_literal_quote) == 0) {
inMLineComment = true;
auto cchar = line.front();
while(inMLineComment) {
if(getline(input, line)) {
detail::trim(line);
} else {
break;
}
if(detail::hasMLString(line, cchar)) {
inMLineComment = false;
}
}
continue;
}
if(line.front() == '[' && line.back() == ']') {
if(currentSection != "default") {
// insert a section end which is just an empty items_buffer
output.emplace_back();
output.back().parents = detail::generate_parents(currentSection, name, parentSeparatorChar);
output.back().name = "--";
}
currentSection = line.substr(1, len - 2);
// deal with double brackets for TOML
if(currentSection.size() > 1 && currentSection.front() == '[' && currentSection.back() == ']') {
currentSection = currentSection.substr(1, currentSection.size() - 2);
}
if(detail::to_lower(currentSection) == "default") {
currentSection = "default";
} else {
detail::checkParentSegments(output, currentSection, parentSeparatorChar);
}
inSection = false;
if(currentSection == previousSection) {
++currentSectionIndex;
} else {
currentSectionIndex = 0;
previousSection = currentSection;
}
continue;
}
// comment lines
if(line.front() == ';' || line.front() == '#' || line.front() == commentChar) {
continue;
}
std::size_t search_start = 0;
if(line.find_first_of("\"'`") != std::string::npos) {
while(search_start < line.size()) {
auto test_char = line[search_start];
if(test_char == '\"' || test_char == '\'' || test_char == '`') {
search_start = detail::close_sequence(line, search_start, line[search_start]);
++search_start;
} else if(test_char == valueDelimiter || test_char == commentChar) {
--search_start;
break;
} else if(test_char == ' ' || test_char == '\t' || test_char == parentSeparatorChar) {
++search_start;
} else {
search_start = line.find_first_of(line_sep_chars, search_start);
}
}
}
// Find = in string, split and recombine
auto delimiter_pos = line.find_first_of(valueDelimiter, search_start + 1);
auto comment_pos = line.find_first_of(commentChar, search_start);
if(comment_pos < delimiter_pos) {
delimiter_pos = std::string::npos;
}
if(delimiter_pos != std::string::npos) {
name = detail::trim_copy(line.substr(0, delimiter_pos));
std::string item = detail::trim_copy(line.substr(delimiter_pos + 1, std::string::npos));
bool mlquote =
(item.compare(0, 3, multiline_literal_quote) == 0 || item.compare(0, 3, multiline_string_quote) == 0);
if(!mlquote && comment_pos != std::string::npos) {
auto citems = detail::split_up(item, commentChar);
item = detail::trim_copy(citems.front());
}
if(mlquote) {
// mutliline string
auto keyChar = item.front();
item = buffer.substr(delimiter_pos + 1, std::string::npos);
detail::ltrim(item);
item.erase(0, 3);
inMLineValue = true;
bool lineExtension{false};
bool firstLine = true;
if(!item.empty() && item.back() == '\\') {
item.pop_back();
lineExtension = true;
}
while(inMLineValue) {
std::string l2;
if(!std::getline(input, l2)) {
break;
}
line = l2;
detail::rtrim(line);
if(detail::hasMLString(line, keyChar)) {
line.pop_back();
line.pop_back();
line.pop_back();
if(lineExtension) {
detail::ltrim(line);
} else if(!(firstLine && item.empty())) {
item.push_back('\n');
}
firstLine = false;
item += line;
inMLineValue = false;
if(!item.empty() && item.back() == '\n') {
item.pop_back();
}
if(keyChar == '\"') {
try {
item = detail::remove_escaped_characters(item);
} catch(const std::invalid_argument &iarg) {
throw CLI::ParseError(iarg.what(), CLI::ExitCodes::InvalidError);
}
}
} else {
if(lineExtension) {
detail::trim(l2);
} else if(!(firstLine && item.empty())) {
item.push_back('\n');
}
lineExtension = false;
firstLine = false;
if(!l2.empty() && l2.back() == '\\') {
lineExtension = true;
l2.pop_back();
}
item += l2;
}
}
items_buffer = {item};
} else if(item.size() > 1 && item.front() == aStart) {
for(std::string multiline; item.back() != aEnd && std::getline(input, multiline);) {
detail::trim(multiline);
item += multiline;
}
if(item.back() == aEnd) {
items_buffer = detail::split_up(item.substr(1, item.length() - 2), aSep);
} else {
items_buffer = detail::split_up(item.substr(1, std::string::npos), aSep);
}
} else if((isDefaultArray || isINIArray) && item.find_first_of(aSep) != std::string::npos) {
items_buffer = detail::split_up(item, aSep);
} else if((isDefaultArray || isINIArray) && item.find_first_of(' ') != std::string::npos) {
items_buffer = detail::split_up(item, '\0');
} else {
items_buffer = {item};
}
} else {
name = detail::trim_copy(line.substr(0, comment_pos));
items_buffer = {"true"};
}
std::vector<std::string> parents;
try {
parents = detail::generate_parents(currentSection, name, parentSeparatorChar);
detail::process_quoted_string(name);
// clean up quotes on the items and check for escaped strings
for(auto &it : items_buffer) {
detail::process_quoted_string(it, stringQuote, literalQuote);
}
} catch(const std::invalid_argument &ia) {
throw CLI::ParseError(ia.what(), CLI::ExitCodes::InvalidError);
}
if(parents.size() > maximumLayers) {
continue;
}
if(!configSection.empty() && !inSection) {
if(parents.empty() || parents.front() != configSection) {
continue;
}
if(configIndex >= 0 && currentSectionIndex != configIndex) {
continue;
}
parents.erase(parents.begin());
inSection = true;
}
if(!output.empty() && name == output.back().name && parents == output.back().parents) {
output.back().inputs.insert(output.back().inputs.end(), items_buffer.begin(), items_buffer.end());
} else {
output.emplace_back();
output.back().parents = std::move(parents);
output.back().name = std::move(name);
output.back().inputs = std::move(items_buffer);
}
}
if(currentSection != "default") {
// insert a section end which is just an empty items_buffer
std::string ename;
output.emplace_back();
output.back().parents = detail::generate_parents(currentSection, ename, parentSeparatorChar);
output.back().name = "--";
while(output.back().parents.size() > 1) {
output.push_back(output.back());
output.back().parents.pop_back();
}
}
return output;
}
CLI11_INLINE std::string &clean_name_string(std::string &name, const std::string &keyChars) {
if(name.find_first_of(keyChars) != std::string::npos || (name.front() == '[' && name.back() == ']') ||
(name.find_first_of("'`\"\\") != std::string::npos)) {
if(name.find_first_of('\'') == std::string::npos) {
name.insert(0, 1, '\'');
name.push_back('\'');
} else {
if(detail::has_escapable_character(name)) {
name = detail::add_escaped_characters(name);
}
name.insert(0, 1, '\"');
name.push_back('\"');
}
}
return name;
}
CLI11_INLINE std::string
ConfigBase::to_config(const App *app, bool default_also, bool write_description, std::string prefix) const {
std::stringstream out;
std::string commentLead;
commentLead.push_back(commentChar);
commentLead.push_back(' ');
std::string commentTest = "#;";
commentTest.push_back(commentChar);
commentTest.push_back(parentSeparatorChar);
std::string keyChars = commentTest;
keyChars.push_back(literalQuote);
keyChars.push_back(stringQuote);
keyChars.push_back(arrayStart);
keyChars.push_back(arrayEnd);
keyChars.push_back(valueDelimiter);
keyChars.push_back(arraySeparator);
std::vector<std::string> groups = app->get_groups();
bool defaultUsed = false;
groups.insert(groups.begin(), std::string("Options"));
if(write_description && (app->get_configurable() || app->get_parent() == nullptr || app->get_name().empty())) {
out << commentLead << detail::fix_newlines(commentLead, app->get_description()) << '\n';
}
for(auto &group : groups) {
if(group == "Options" || group.empty()) {
if(defaultUsed) {
continue;
}
defaultUsed = true;
}
if(write_description && group != "Options" && !group.empty()) {
out << '\n' << commentLead << group << " Options\n";
}
for(const Option *opt : app->get_options({})) {
// Only process options that are configurable
if(opt->get_configurable()) {
if(opt->get_group() != group) {
if(!(group == "Options" && opt->get_group().empty())) {
continue;
}
}
std::string single_name = opt->get_single_name();
if(single_name.empty()) {
continue;
}
std::string value = detail::ini_join(
opt->reduced_results(), arraySeparator, arrayStart, arrayEnd, stringQuote, literalQuote);
if(value.empty() && default_also) {
if(!opt->get_default_str().empty()) {
value = detail::convert_arg_for_ini(opt->get_default_str(), stringQuote, literalQuote, false);
} else if(opt->get_expected_min() == 0) {
value = "false";
} else if(opt->get_run_callback_for_default()) {
value = "\"\""; // empty string default value
}
}
if(!value.empty()) {
if(!opt->get_fnames().empty()) {
try {
value = opt->get_flag_value(single_name, value);
} catch(const CLI::ArgumentMismatch &) {
bool valid{false};
for(const auto &test_name : opt->get_fnames()) {
try {
value = opt->get_flag_value(test_name, value);
single_name = test_name;
valid = true;
} catch(const CLI::ArgumentMismatch &) {
continue;
}
}
if(!valid) {
value = detail::ini_join(
opt->results(), arraySeparator, arrayStart, arrayEnd, stringQuote, literalQuote);
}
}
}
if(write_description && opt->has_description()) {
out << '\n';
out << commentLead << detail::fix_newlines(commentLead, opt->get_description()) << '\n';
}
clean_name_string(single_name, keyChars);
std::string name = prefix + single_name;
out << name << valueDelimiter << value << '\n';
}
}
}
}
auto subcommands = app->get_subcommands({});
for(const App *subcom : subcommands) {
if(subcom->get_name().empty()) {
if(!default_also && (subcom->count_all() == 0)) {
continue;
}
if(write_description && !subcom->get_group().empty()) {
out << '\n' << commentLead << subcom->get_group() << " Options\n";
}
/*if (!prefix.empty() || app->get_parent() == nullptr) {
out << '[' << prefix << "___"<< subcom->get_group() << "]\n";
} else {
std::string subname = app->get_name() + parentSeparatorChar + "___"+subcom->get_group();
const auto *p = app->get_parent();
while(p->get_parent() != nullptr) {
subname = p->get_name() + parentSeparatorChar +subname;
p = p->get_parent();
}
out << '[' << subname << "]\n";
}
*/
out << to_config(subcom, default_also, write_description, prefix);
}
}
for(const App *subcom : subcommands) {
if(!subcom->get_name().empty()) {
if(!default_also && (subcom->count_all() == 0)) {
continue;
}
std::string subname = subcom->get_name();
clean_name_string(subname, keyChars);
if(subcom->get_configurable() && app->got_subcommand(subcom)) {
if(!prefix.empty() || app->get_parent() == nullptr) {
out << '[' << prefix << subname << "]\n";
} else {
std::string appname = app->get_name();
clean_name_string(appname, keyChars);
subname = appname + parentSeparatorChar + subname;
const auto *p = app->get_parent();
while(p->get_parent() != nullptr) {
std::string pname = p->get_name();
clean_name_string(pname, keyChars);
subname = pname + parentSeparatorChar + subname;
p = p->get_parent();
}
out << '[' << subname << "]\n";
}
out << to_config(subcom, default_also, write_description, "");
} else {
out << to_config(subcom, default_also, write_description, prefix + subname + parentSeparatorChar);
}
}
}
return out.str();
}
CLI11_INLINE std::string
Formatter::make_group(std::string group, bool is_positional, std::vector<const Option *> opts) const {
std::stringstream out;
out << "\n" << group << ":\n";
for(const Option *opt : opts) {
out << make_option(opt, is_positional);
}
return out.str();
}
CLI11_INLINE std::string Formatter::make_positionals(const App *app) const {
std::vector<const Option *> opts =
app->get_options([](const Option *opt) { return !opt->get_group().empty() && opt->get_positional(); });
if(opts.empty())
return {};
return make_group(get_label("Positionals"), true, opts);
}
CLI11_INLINE std::string Formatter::make_groups(const App *app, AppFormatMode mode) const {
std::stringstream out;
std::vector<std::string> groups = app->get_groups();
// Options
for(const std::string &group : groups) {
std::vector<const Option *> opts = app->get_options([app, mode, &group](const Option *opt) {
return opt->get_group() == group // Must be in the right group
&& opt->nonpositional() // Must not be a positional
&& (mode != AppFormatMode::Sub // If mode is Sub, then
|| (app->get_help_ptr() != opt // Ignore help pointer
&& app->get_help_all_ptr() != opt)); // Ignore help all pointer
});
if(!group.empty() && !opts.empty()) {
out << make_group(group, false, opts);
if(group != groups.back())
out << "\n";
}
}
return out.str();
}
CLI11_INLINE std::string Formatter::make_description(const App *app) const {
std::string desc = app->get_description();
auto min_options = app->get_require_option_min();
auto max_options = app->get_require_option_max();
if(app->get_required()) {
desc += " " + get_label("REQUIRED") + " ";
}
if((max_options == min_options) && (min_options > 0)) {
if(min_options == 1) {
desc += " \n[Exactly 1 of the following options is required]";
} else {
desc += " \n[Exactly " + std::to_string(min_options) + " options from the following list are required]";
}
} else if(max_options > 0) {
if(min_options > 0) {
desc += " \n[Between " + std::to_string(min_options) + " and " + std::to_string(max_options) +
" of the follow options are required]";
} else {
desc += " \n[At most " + std::to_string(max_options) + " of the following options are allowed]";
}
} else if(min_options > 0) {
desc += " \n[At least " + std::to_string(min_options) + " of the following options are required]";
}
return (!desc.empty()) ? desc + "\n" : std::string{};
}
CLI11_INLINE std::string Formatter::make_usage(const App *app, std::string name) const {
std::string usage = app->get_usage();
if(!usage.empty()) {
return usage + "\n";
}
std::stringstream out;
out << get_label("Usage") << ":" << (name.empty() ? "" : " ") << name;
std::vector<std::string> groups = app->get_groups();
// Print an Options badge if any options exist
std::vector<const Option *> non_pos_options =
app->get_options([](const Option *opt) { return opt->nonpositional(); });
if(!non_pos_options.empty())
out << " [" << get_label("OPTIONS") << "]";
// Positionals need to be listed here
std::vector<const Option *> positionals = app->get_options([](const Option *opt) { return opt->get_positional(); });
// Print out positionals if any are left
if(!positionals.empty()) {
// Convert to help names
std::vector<std::string> positional_names(positionals.size());
std::transform(positionals.begin(), positionals.end(), positional_names.begin(), [this](const Option *opt) {
return make_option_usage(opt);
});
out << " " << detail::join(positional_names, " ");
}
// Add a marker if subcommands are expected or optional
if(!app->get_subcommands(
[](const CLI::App *subc) { return ((!subc->get_disabled()) && (!subc->get_name().empty())); })
.empty()) {
out << " " << (app->get_require_subcommand_min() == 0 ? "[" : "")
<< get_label(app->get_require_subcommand_max() < 2 || app->get_require_subcommand_min() > 1 ? "SUBCOMMAND"
: "SUBCOMMANDS")
<< (app->get_require_subcommand_min() == 0 ? "]" : "");
}
out << '\n';
return out.str();
}
CLI11_INLINE std::string Formatter::make_footer(const App *app) const {
std::string footer = app->get_footer();
if(footer.empty()) {
return std::string{};
}
return "\n" + footer + "\n";
}
CLI11_INLINE std::string Formatter::make_help(const App *app, std::string name, AppFormatMode mode) const {
// This immediately forwards to the make_expanded method. This is done this way so that subcommands can
// have overridden formatters
if(mode == AppFormatMode::Sub)
return make_expanded(app);
std::stringstream out;
if((app->get_name().empty()) && (app->get_parent() != nullptr)) {
if(app->get_group() != "Subcommands") {
out << app->get_group() << ':';
}
}
out << make_description(app);
out << make_usage(app, name);
out << make_positionals(app);
out << make_groups(app, mode);
out << make_subcommands(app, mode);
out << make_footer(app);
return out.str();
}
CLI11_INLINE std::string Formatter::make_subcommands(const App *app, AppFormatMode mode) const {
std::stringstream out;
std::vector<const App *> subcommands = app->get_subcommands({});
// Make a list in definition order of the groups seen
std::vector<std::string> subcmd_groups_seen;
for(const App *com : subcommands) {
if(com->get_name().empty()) {
if(!com->get_group().empty()) {
out << make_expanded(com);
}
continue;
}
std::string group_key = com->get_group();
if(!group_key.empty() &&
std::find_if(subcmd_groups_seen.begin(), subcmd_groups_seen.end(), [&group_key](std::string a) {
return detail::to_lower(a) == detail::to_lower(group_key);
}) == subcmd_groups_seen.end())
subcmd_groups_seen.push_back(group_key);
}
// For each group, filter out and print subcommands
for(const std::string &group : subcmd_groups_seen) {
out << "\n" << group << ":\n";
std::vector<const App *> subcommands_group = app->get_subcommands(
[&group](const App *sub_app) { return detail::to_lower(sub_app->get_group()) == detail::to_lower(group); });
for(const App *new_com : subcommands_group) {
if(new_com->get_name().empty())
continue;
if(mode != AppFormatMode::All) {
out << make_subcommand(new_com);
} else {
out << new_com->help(new_com->get_name(), AppFormatMode::Sub);
out << "\n";
}
}
}
return out.str();
}
CLI11_INLINE std::string Formatter::make_subcommand(const App *sub) const {
std::stringstream out;
detail::format_help(out,
sub->get_display_name(true) + (sub->get_required() ? " " + get_label("REQUIRED") : ""),
sub->get_description(),
column_width_);
return out.str();
}
CLI11_INLINE std::string Formatter::make_expanded(const App *sub) const {
std::stringstream out;
out << sub->get_display_name(true) << "\n";
out << make_description(sub);
if(sub->get_name().empty() && !sub->get_aliases().empty()) {
detail::format_aliases(out, sub->get_aliases(), column_width_ + 2);
}
out << make_positionals(sub);
out << make_groups(sub, AppFormatMode::Sub);
out << make_subcommands(sub, AppFormatMode::Sub);
// Drop blank spaces
std::string tmp = detail::find_and_replace(out.str(), "\n\n", "\n");
tmp = tmp.substr(0, tmp.size() - 1); // Remove the final '\n'
// Indent all but the first line (the name)
return detail::find_and_replace(tmp, "\n", "\n ") + "\n";
}
CLI11_INLINE std::string Formatter::make_option_name(const Option *opt, bool is_positional) const {
if(is_positional)
return opt->get_name(true, false);
return opt->get_name(false, true);
}
CLI11_INLINE std::string Formatter::make_option_opts(const Option *opt) const {
std::stringstream out;
if(!opt->get_option_text().empty()) {
out << " " << opt->get_option_text();
} else {
if(opt->get_type_size() != 0) {
if(!opt->get_type_name().empty())
out << " " << get_label(opt->get_type_name());
if(!opt->get_default_str().empty())
out << " [" << opt->get_default_str() << "] ";
if(opt->get_expected_max() == detail::expected_max_vector_size)
out << " ...";
else if(opt->get_expected_min() > 1)
out << " x " << opt->get_expected();
if(opt->get_required())
out << " " << get_label("REQUIRED");
}
if(!opt->get_envname().empty())
out << " (" << get_label("Env") << ":" << opt->get_envname() << ")";
if(!opt->get_needs().empty()) {
out << " " << get_label("Needs") << ":";
for(const Option *op : opt->get_needs())
out << " " << op->get_name();
}
if(!opt->get_excludes().empty()) {
out << " " << get_label("Excludes") << ":";
for(const Option *op : opt->get_excludes())
out << " " << op->get_name();
}
}
return out.str();
}
CLI11_INLINE std::string Formatter::make_option_desc(const Option *opt) const { return opt->get_description(); }
CLI11_INLINE std::string Formatter::make_option_usage(const Option *opt) const {
// Note that these are positionals usages
std::stringstream out;
out << make_option_name(opt, true);
if(opt->get_expected_max() >= detail::expected_max_vector_size)
out << "...";
else if(opt->get_expected_max() > 1)
out << "(" << opt->get_expected() << "x)";
return opt->get_required() ? out.str() : "[" + out.str() + "]";
}
} // namespace CLI